COSTES EXTERNOS DEL TRANSPORTE EN LA CAPV:
ACTUALIZACIÓN ORIENTADA A LA APLICACIÓN DE MEDIDAS PARA
INTERNALIZAR Y REDUCIR DICHOS COSTES

DEPARTAMENTO DE VIVIENDA, OBRAS PÚBLICAS Y TRANSPORTES

Documento I. Marco legislativo y políticas de internalización, relación de instrumentos y medidas.

Documento II. Reestructuración y actualización de los costes externos

Junio 2010
El documento se publica en la Web del Gobierno Vasco, en OTEUS (Observatorio del Transporte de Euskadi):
www.garraioak.ejgv.euskadi.net/r41-4833/es/

EQUIPO DE TRABAJO:
Redactor: Eduardo García
Revisión: Iosu Ramírez
Colaboración Técnica: Lorena Balsera

La redacción de este documento ha sido supervisada por OTEUS

DIRECCIÓN POSTAL DE LEBER PLANIFICACIÓN E INGENIERÍA, S.A.:

Apartado 79
48930-Las Arenas, Bizkaia

Tfno: 94 464 3355
Fax. 94 464 3562

info@leber.org
www.leber.org

OFICINAS:
Landabarri, 4, 1ª planta
Leioa, Bizkaia
ÍNDICE

DOCUMENTO I. MARCO LEGISLATIVO Y RELACIÓN DE INSTRUMENTOS

1 INTRODUCCIÓN ... 8
2 ANÁLISIS Y DIAGNÓSTICO DE LOS COSTES EXTERNOS ... 9
 2.1 Síntesis de costes externos empleados ... 10
 2.1.1 Costes de congestión ... 10
 2.1.2 Costes de siniestralidad ... 11
 2.1.3 Costes ambientales ... 11
 2.1.4 Otros costes externos .. 12
 2.2 Procesos de estimación de costes .. 13
 2.2.1 Costes por congestión ... 13
 2.2.2 Costes por accidentes ... 15
 2.2.3 Costes por contaminación del aire ... 17
 2.2.4 Costes por ruido ... 18
 2.2.5 Costes por cambio climático .. 20
 2.2.6 Costes para la naturaleza y el paisaje .. 21
 2.2.7 Costes por contaminación de suelo y agua ... 21
 2.2.8 Costes por efectos indirectos .. 22
 2.2.9 Otros costes en áreas urbanas ... 22
 2.2.10 Costes por dependencia energética ... 23
 2.3 Conclusiones .. 23
3 MARCO LEGISLATIVO. POLÍTICAS DE INTERNALIZACIÓN ... 24
 3.1 Marco legislativo ... 25
 3.1.1 La Euroviñeta ... 25
 3.1.2 Directiva 2001/14/CE de infraestructura ferroviaria ... 30
 3.1.3 Propuesta sobre impuestos aplicables a los automóviles de turismo 32
 3.1.4 Medidas fiscales y ayudas económicas aplicadas en nuestro entorno 33
 3.2 Medidas de internalización y/o reducción de costes .. 34
 3.2.1 Peaje urbano de Londres ... 34
 3.2.2 Peaje urbano de Estocolmo ... 37
 3.2.3 Peaje urbano de Singapur y medidas complementarias ... 38
 3.2.4 Ecopass, Milán .. 40
 3.2.5 Medidas de restricción del tráfico .. 41
3.2.6 Propuesta de regulación del acceso de automóviles en Madrid 42
3.2.7 Aparcamientos disuasorios de conexión con transporte público 43
3.2.8 Gravamen sobre transporte pesado sujeto a las prestaciones (GTPP) 46
3.3 Conclusiones ... 48

DOCUMENTO II. REESTRUCTURACIÓN Y ACTUALIZACIÓN DE LOS COSTES EXTERNOS 51

1 INTRODUCCIÓN ... 52
2 RESULTADOS GLOBALES .. 54
3 PROCESO DE OBTENCIÓN DE DATOS .. 57
 3.1 Datos de siniestralidad .. 57
 3.2 Evolución de tráfico ... 58
 3.2.1 Evolución del tráfico en las carreteras de Álava ... 58
 3.2.2 Evolución del tráfico en las carreteras de Bizkaia ... 59
 3.2.3 Evolución del tráfico en las carreteras de Gipuzkoa .. 61
 3.2.4 Evolución global del tráfico en las carreteras del País Vasco 61
 3.3 Parque de vehículos ... 62
 3.4 Evolución del transporte público de personas ... 68
 3.5 Evolución del transporte de mercancías .. 69
 3.5.1 Transporte de mercancías por carretera .. 69
 3.5.2 Transporte de mercancías por ferrocarril ... 69
 3.6 Evolución del tráfico urbano ... 70
 3.7 Evolución de las infraestructuras ... 71
 3.8 Producción de energía eléctrica ... 72
 3.9 Evolución de la congestión ... 73
4 RESULTADOS ... 74
 4.1 Costes por cambio climático ... 74
 4.2 Costes por accidentes ... 76
 4.3 Costes por ruido .. 78
 4.4 Costes por contaminación del aire .. 80
 4.5 Costes de naturaleza y paisaje .. 82
 4.6 Costes en áreas urbanas ... 84
 4.7 Costes por efectos indirectos .. 86
 4.8 Costes por congestión ... 88
 4.9 Síntesis de costes totales y actualización a precios de 2008 90
SÍNTESIS DEL TRABAJO 93

SÍNTESIS .. 94
Costes externos valorados ... 94
Marco legislativo .. 95
Medidas de internalización y/o reducción de costes .. 97
Reestructuración y actualización de los costes externos ... 99

BIBLIOGRAFÍA Y REFERENCIAS 105
Documento I. Marco legislativo y relación de instrumentos
1 Introducción

El presente documento es el primero de los que componen el estudio de actualización e internalización de costes externos del transporte en la CAPV, el cual toma como referencia básica el realizado para el Gobierno Vasco en el año 2006 sobre datos de 2004 (en adelante CETPV) que se menciona en el pliego de prescripciones técnicas particulares de este estudio. De la misma manera que en el estudio llevado a cabo en 2006, nos centraremos en el transporte terrestre.

Esta primera fase del estudio tiene como objetivo el análisis y el diagnóstico de la situación actual de los costes externos del transporte en un entorno amplio, además de establecer una relación de instrumentos y medidas destinadas a la internalización y/o reducción de las externalidades asociadas a la actividad del transporte.

En la primera parte de este informe, correspondiente al análisis y diagnóstico de costes externos, nos centraremos en revisar la importancia de las externalidades asociadas a la actividad del transporte, tanto a nivel nacional como internacional. Como referencia más inmediata tomaremos el entorno europeo que viene siendo puntero en este aspecto.

En la segunda parte nos centraremos en el estudio de los instrumentos y medidas puestas en práctica y que están destinadas por una parte a la mitigación de los costes externos asociados a la actividad del transporte, y por otra a la imputación de dichos costes al propio usuario del transporte que los ha generado.

Como base de este trabajo tomaremos los estudios desarrollados por la Comisión Europea (CE) que en los últimos 15 años ha trabajado intensamente en la cuantificación de los costes externos, en particular en aspectos socioeconómicos en el campo de la energía.

Una definición de costes externos

El sector del transporte se ha configurado como un elemento básico en la economía a la hora de contribuir al desarrollo y crecimiento de la misma. Sin embargo, a pesar de sus efectos positivos, su actividad presenta algunos aspectos negativos, los cuales implican la generación de unos costes que han de ser considerados. Ejemplo de éstos son la congestión, contaminación del aire, emisión de ruidos, etc. En general, los costes asociados a estos efectos no son imputados a aquéllos que desarrollan la actividad del transporte, y por lo tanto no son tenidos en cuenta por los mismos a la hora de decidir un desplazamiento. Más bien los costes acaban siendo sufridos y sufragados por la sociedad en general. Por este motivo a estos efectos se les denomina como efectos externos, y a los costes asociados a los mismos, costes externos.

1 Referencia bibliográfica 1. Costes Externos del Transporte en el País Vasco
2 Análisis y diagnóstico de los costes externos

A fin de mostrar la situación en que se encuentra en la actualidad las políticas destinadas a la estimación de los costes externos, nos apoyamos básicamente en la concepción de las mismas en el ámbito de la Unión Europea (UE), en el que geográficamente nos movemos y que se encuentra a la vanguardia en las mencionadas políticas. De hecho desde hace ya algunos años este aspecto ha sido considerado en las políticas de transporte desarrolladas por la propia UE. A continuación desarrollamos los conceptos y metodologías de estimación de costes externos, tomando como referencia más importante el manual de estimación de costes externos en el sector del transporte.

En una concepción de los costes externos más explícita que la que hemos enunciado en la introducción, hemos de distinguir dentro de la actividad del transporte entre los costes sociales y los costes privados.

Entre los costes privados, que son satisfechos directamente por el usuario del transporte se encuentran varios conceptos. Por un lado los de uso del vehículo, consistentes en los derivados del mantenimiento y desgaste del vehículo y energía consumida; por otra parte se encuentran los costes del tiempo propio, de los seguros, de impuestos, tasas y en su caso, peajes a los que hace frente el usuario.

Dentro de los costes sociales, no satisfechos por el usuario de la actividad del transporte, se computan varios conceptos. Entre éstos se encuentran los costes de construcción y mantenimiento de la infraestructura, los costes de congestión, los costes de la siniestralidad y los costes ambientales que incluyen diversos aspectos.

Desde una perspectiva económica, los usuarios del transporte deberían pagar los costes marginales sociales que se derivan de la propia actividad del transporte. De esta concepción se entiende que el precio por uso de infraestructura al que hacen frente los usuarios de la misma debería reflejar los costes externos derivados de su uso, los cuales incluirían los mencionados anteriormente de construcción y uso de la misma, la congestión, la siniestralidad y los impactos en el medio. De ellos, sólo una parte tiene un reflejo directamente económico sufragado bien por la administración o bien por el usuario, el resto (congestión, accidentes, costes ambientales) son los que constituyen una pérdida de bienestar para el conjunto de la sociedad.

Siguiendo con la perspectiva económica, los procesos de estimación de estos costes externos se basan en el concepto del coste óptimo según el cual el precio del coste externo del daño provocado es igual al precio que tendría el evitar ese daño.

Apoyándose en este concepto, se han desarrollado diversos estudios con recomendaciones sobre los valores económicos a considerar a la hora de establecer los costes de los diversos tipos de externalidades. Estos valores dependen de las características del área geográfica en que se desarrollen y del estudio de referencia empleado.

La metodología empleada en la estimación de estos costes también ha sido desarrollada en diversos estudios, existiendo una amplia coincidencia en este aspecto. Así, para la estimación de los costes por congestión, las metodologías se basan en las diferencias de velocidad en diversos flujos, en el valor del tiempo para el usuario y en la elasticidad de la demanda. En el
caso de los costes por contaminación del aire y ruido, la metodología se basa en el concepto de valor estadístico de la vida humana entre otros. En el caso de la siniестralidad, las metodologías se apoyan en el concepto de valor de riesgo, basado en el mencionado valor estadístico de la vida. La metodología de estimación de costes asociados al cambio climático se apoya en el gasto necesario para evitar a las emisiones de CO₂ en cumplimiento del protocolo de reducción de emisiones empleado.

Existe una gran complejidad a la hora de establecer una valoración del impacto provocado por la actividad del transporte en la salud de las personas. Desde la Comisión Europea (CE) se han llevado a cabo trabajos que han asignado un valor económico a estos impactos. En concreto establece un valor por la prevención de fallecimientos de entre 1 millón de €₂₀₀₀ (euros del año 2000) y 1,4 millones de €₂₀₀₀ según provengan de enfermedad o de accidente. Esta diferencia estriba en que se estima que los fallecimientos por enfermedad se producen en personas de más edad que los fallecimientos por accidente de tráfico. La horquilla más amplia varía entre los 650.000 €₂₀₀₀ y los 2.500.000 €₂₀₀₀.

2.1 SÍNTESIS DE COSTES EXTERNOS EMPLEADOS³⁴⁵

A continuación hacemos un breve desarrollo de cada uno de los componentes de los conceptos que son considerados habitualmente en los estudios destinados a estimar los costes externos asociados a la actividad del transporte.

2.1.1 Costes de congestión

En el caso de los costes asociados a la congestión, se engloban las componentes de:

- Pérdidas de tiempo
- Falta de fiabilidad
- Pérdida de actividad económica.

Las externalidades asociadas se refieren a aquellos costes extra que han de soportar el resto de usuarios y la sociedad en general más allá de los costes propios que sufre cada uno de los usuarios.

Para el caso del transporte por carretera, los costes consisten en la diferencia entre los costes marginales propios de cada usuario y el coste medio global basado en una función de coste de congestión.

Estos costes dependen del nivel de servicio de la vía que está determinado por el tipo de vía y su capacidad, la cual varía en función de las circunstancias, como son obras o accidentes en el viario y su ubicación y el volumen de tráfico, el cual depende de la hora del día.

En el caso del transporte colectivo la congestión se considera como la falta de capacidad del propio servicio. La estimación de las externalidades se apoya en la diferencia entre la disposición a pagar que tiene el usuario por recibir un mejor servicio y lo que paga por el servicio que realmente recibe.

³ Referencia bibliográfica 3. Methodologies for external cost estimates and internalization scenarios
⁴ Referencia bibliográfica 2. Handbook on estimation of external costs in the transport sector
⁵ Referencia bibliográfica 4. External costs in the transport sector: A literature review
2.1.2 Costes de siniestralidad

Se refieren a los costes materiales, médicos, de productividad, por sufrimiento del accidentado y sentimentales por los fallecimientos que causan los accidentes.

Las externalidades se computan como aquella parte del coste social que no es cubierta por los seguros de accidentes.

En la actualidad no existe una postura clara de si el riesgo asumido por un usuario del vehículo privado ha de ser considerado como un coste del individuo o como un coste social. En el anterior estudio sobre Costes Externos del Transporte en el País Vasco (CETPV) del año 2006, se consideró este aspecto como un coste social. En el presente estudio se va a mantener este mismo criterio.

Para el caso de la siniestralidad en el transporte público sí existe acuerdo en considerarlos como costes sociales.

En la siniestralidad influyen aspectos como el tipo de infraestructura, el volumen de tráfico, la velocidad y las características y estados de los conductores (edad, condiciones en que se encuentran…)

2.1.3 Costes ambientales

Hacen referencia a los daños provocados por las afecciones al medio ambiente. Entre ellos se encuentran los siguientes:

2.1.3.1 Costes por contaminación del aire

Los costes por contaminación se refieren al impacto que las emisiones de partículas PM10, NOx, SO2 e hidrocarburos tienen en la salud de las personas, ya sea materializada en costes del sistema sanitario o en pérdida de años de vida. Si bien éstos suelen ser los impactos más importantes, también se valoran los efectos en pérdidas en las cosechas y daños en los edificios.

El impacto depende de la densidad de población de la zona, de los tipos y condiciones de vehículos del entorno, de la longitud de los viajes debido a las diferentes emisiones que se producen en el arranque en frío con respecto a la circulación con el motor caliente, la velocidad de los vehículos y el tipo de infraestructura.

2.1.3.2 Costes por ruido

El impacto producido por el ruido emitido por los diversos modos de transporte se materializa en la pérdida de valor de los inmuebles ubicados en las proximidades de las infraestructuras, malestar para la población y los costes de los tratamientos sanitarios asociados.

En la dimensión del impacto asociado al ruido influyen aspectos tales como la densidad de población en el entorno de las infraestructuras, periodo del día en el que se producen las emisiones de ruido, el tipo de infraestructura y el tipo y condiciones de los vehículos.

2.1.3.3 Costes por cambio climático

Estos se refieren a los costes de prevención para reducir el cambio climático y a los daños ocasionados por el incremento de la temperatura. Los costes asociados vienen a ser proporcionales al volumen de tráfico y al combustible consumido.

Los volúmenes de emisiones dependen del tipo de vehículo, la velocidad, el modo de conducción y el tipo y volumen de combustible empleado.
2.1.4 Otros costes externos

En general los estudios de estimación de costes se centran en los conceptos más importantes y que se han mencionado anteriormente: congestión, siniestralidad, contaminación del aire, ruido y cambio climático. El resto de conceptos, los cuales se detallan a continuación, habitualmente no se tienen en cuenta debido a la complejidad de la estimación de impactos y su valoración, a que no se da una relación directa entre el uso de la infraestructura y el coste producido y a la dificultad de la asignación de los costes al propio sistema de transporte.

De hecho existen pocos proyectos en los que se haya desarrollado la metodología para su estimación. La descripción de estos conceptos se desarrolla seguidamente.

2.1.4.1 Costes para la naturaleza y el paisaje

Se refieren al gasto necesario para reducir el efecto barrera de las infraestructuras y a los costes de compensación destinados al mantenimiento de la biodiversidad en el entorno. Estos costes están relacionados principalmente con las propias infraestructuras, no tanto con la demanda de transporte. Por tanto se relacionan directamente con el tipo de infraestructura y con la sensibilidad del área en el que ésta se ubique.

2.1.4.2 Costes por contaminación de suelo y agua

Son los asociados al aseguramiento de la calidad del suelo y de las aguas. Están directamente relacionados con los volúmenes y tipo de emisiones y el tipo de la infraestructura.

2.1.4.3 Otros costes en áreas urbanas

Este concepto se refiere a dos aspectos, por un lado al efecto barrera que las infraestructuras del transporte tienen en la movilidad no motorizada de las áreas urbanas, por otra a la ocupación de espacio de esas mismas infraestructuras que impide que sea utilizado en la movilidad no motorizada. Los efectos asociados dependen del tipo de infraestructura existente y de los volúmenes de tráfico.

2.1.4.4 Efectos indirectos

Hacen referencia a los procesos anteriores y posteriores a la realización de la actividad del transporte pero que son necesarios para su consecución, se centran en el consumo energético asociado. Engloban los procesos de construcción de infraestructuras, producción y desguace de vehículos y producción energética. Los efectos se materializan en la emisión de gases de efecto invernadero con su consecuente impacto en el cambio climático.

Los costes están asociados al consumo de energía en los procesos mencionados y a la composición del mix eléctrico, es decir: el conjunto de las diversas fuentes de energía empleadas para generar la electricidad y la proporción en que está representada cada una de esas fuentes.

2.1.4.5 Costes por dependencia energética

Este concepto es el único que no se consideraba durante la elaboración del estudio de referencia CETPV, ya que ha surgido recientemente. Ha sido desarrollado sobre todo en los Estados Unidos y en la actualidad sólo existen resultados de su estimación en ese ámbito geográfico.

6 Referencia bibliográfica 2. Handbook on estimation of external costs in the transport sector
2.2 PROCESOS DE ESTIMACIÓN DE COSTES

A continuación desarrollamos las diversas metodologías existentes a nivel internacional en la estimación de los conceptos de costes externos que hemos mencionado anteriormente.

2.2.1 Costes por congestión

La congestión consiste en las perturbaciones que se producen entre los usuarios de una misma infraestructura. Existen diversas versiones de cómo estimar el impacto que en la sociedad tienen estos costes.

En primer lugar vamos a exponer los resultados del Manual de Estimación de Costes Externos en el Sector del Transporte\(^7\).

Según este documento, los efectos pueden traducirse en un incremento del tiempo de viaje, el cual resulta ser la componente más importante de este concepto, en torno al 90% de los costes de congestión. Los costes están directamente relacionados con el valor del tiempo, el cual depende del motivo de viaje, el modo empleado, la longitud del desplazamiento y la comodidad. Este es el motivo de coste considerado habitualmente, aunque con criterios más recientes se tiende a considerar otras componentes.

Dentro de esos criterios mencionados, se podrían incluir otros costes económicos como es el incremento en el dimensionamiento del parque de vehículos para poder cumplir frecuencias de viaje, los costes de operación y los costes de personal en que incurren los viajes comerciales por carretera, ya sean de viajeros o de mercancías. Sin embargo es práctica común que éstos se engloben dentro de los derivados del incremento del tiempo de viaje.

También se pueden incluir las diferentes valoraciones del tiempo que surgen en los momentos de congestión en los que se estima que la impaciencia de los viajeros implica un aumento del valor del tiempo del 50%. Otra componente que podría considerarse es el incremento en consumo de combustible con respecto al que se produce con circulación en flujo libre.

La fiabilidad del tiempo de viaje es considerada como una componente aparte de las mencionadas, en el sentido de que implica unos costes económicos que van más allá del propio tiempo de viaje, especialmente en el caso del transporte de mercancías.

En el caso del transporte ferroviario, el concepto de congestión se refiere al funcionamiento del sistema en el límite de la capacidad, de manera que se incrementa el riesgo de sufrir demoras derivadas de cualquier elemento imprevisto. En este caso no existe una postura clara de cómo medir las externalidades asociadas a esta situación, ya que éstas dependen de la situación del propio mercado y de los costes de la prestación del servicio.

A continuación mostramos la óptica ofrecida por el documento External costs in the transport sector: A literature review, referencia bibliográfica 4.

En el mencionado estudio, a diferencia del anterior, se mencionan los costes de congestión refiriéndose a las demoras del tráfico, asociando las externalidades a las

\(^7\) Referencia bibliográfica 2. Handbook on estimation of external costs in the transport sector
propias pérdidas de tiempo, pero también a la tensión de los conductores, los costes de funcionamiento de los vehículos, el riesgo de accidentes y a la contaminación asociada.

Una de las metodologías mencionada en dicho estudio consiste en la estimación de la demora que cada nuevo vehículo que se incorpora al tráfico causa en el resto de vehículos en base a la velocidad existente en flujo libre.

Otra metodología consiste en la estimación de la tarifa a aplicar sobre la vía que permita la disipación de la congestión mediante la reducción de la demanda que conlleva; esto sería un reflejo de la disposición a pagar del usuario para poder acceder a una vía en condiciones adecuadas.

La tercera metodología que se menciona en el mencionado estudio se refiere a la estimación de los costes que tendrían los proyectos viarios destinados a la disipación de la congestión.

En teoría, las tres metodologías deberían ofrecer resultados similares, sin embargo en la práctica éstos difieren entre sí de manera importante.

A continuación ofrecemos unos valores promedio del tiempo en €2002 para el conjunto de la UE. Están referidos tanto al modo como al motivo de viaje y a la magnitud de la distancia. Los modos de viaje que figuran son: automóvil (Car), ferrocarril (Rail) y autobús urbano o interurbano (Bus/Coach), además de transporte aéreo (Air) que no es el objeto del presente trabajo.

En cuanto a los motivos de viaje figuran para transporte de pasajeros, con valores del tiempo por viajero y hora: gestiones de trabajo (Work business), viajes al puesto de trabajo de corta y larga distancia (Commuting, short/long distance) y otros motivos de corta y larga distancia (Other, short/long distance).

También se hace una valoración del tiempo para los viajes de mercancías por Tm y hora.

Recommended values of Time in passenger and freight transport (EU-25 average)

<table>
<thead>
<tr>
<th>Sector/purpose</th>
<th>Unit</th>
<th>Car/HGV</th>
<th>Rail</th>
<th>Bus/Coach</th>
<th>Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger transport</td>
<td>€2002/passenger, hour</td>
<td>23.82</td>
<td>19.11</td>
<td>32.80</td>
<td></td>
</tr>
<tr>
<td>Work (business)</td>
<td></td>
<td>23.82</td>
<td></td>
<td>19.11</td>
<td>32.80</td>
</tr>
<tr>
<td>Commuting, short distance</td>
<td></td>
<td>8.48</td>
<td>6.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commuting, long distance</td>
<td></td>
<td>10.89</td>
<td>7.83</td>
<td>16.25</td>
<td></td>
</tr>
<tr>
<td>Other, short distance</td>
<td></td>
<td>7.11</td>
<td>5.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, long distance</td>
<td></td>
<td>9.13</td>
<td>6.56</td>
<td>13.62</td>
<td></td>
</tr>
<tr>
<td>Freight transport</td>
<td>€2002/ton, hour</td>
<td>2.98</td>
<td>1.22</td>
<td>/</td>
<td>n. a.</td>
</tr>
</tbody>
</table>

* Values presented by HEATCO (70% of long distance values) have been removed, because short distance air transport (below 60 km) does not happen.

Source: HEATCO, Deliverable 5: Tables 0-6 to 0-8.

Remark: The VOT in commercial transport contains all components of a full cost calculation including vehicle provision, personnel, fuel and second-order effects on customers.

2.2.2 Costes por accidentes

Según el concepto teórico la siniestralidad tiene dos componentes de costes: internos y externos. Los primeros son imputados al propio usuario y pueden variar entre un 59 y un 76% en el transporte por carretera dependiendo de la cobertura sanitaria existente en el lugar en que se produzca el siniestro. Los segundos son los que afectan a otras personas y a la sociedad en general. Por tanto el coste marginal total es el coste extra que un usuario del transporte imputa al resto de usuarios y a la sociedad en general. Si el número de accidentes no variase por la introducción de un nuevo individuo en el sistema de transporte, el coste marginal sería 0; sin embargo esto no es así ya que cada nuevo vehículo que se incorpora al sistema genera un aumento del riesgo de siniestralidad.

En la estimación de los costes externos por accidentes se consideran cuatro tipos: accidentes con fallecidos, accidentes con heridos graves, accidentes con heridos leves y accidentes con daños materiales.

La estimación de costes se realiza según la disposición a pagar para reducir a 0 el riesgo de sufrirlos por parte de los propios usuarios, de los allegados a las víctimas y del resto de la sociedad.

Las componentes más importantes de costes se refieren a: costes administrativos, costes médicos, por sufrimiento del accidentado y sentimentales por los fallecimientos que causan los accidentes. Estos últimos, sin embargo, no se llegan a valorar según la metodología existente debido a la importante dificultad de asignarles un valor monetario.

Los aspectos que más influyen en la siniestralidad del transporte por carretera son: intensidad y velocidad de la circulación, el tipo de carretera, el comportamiento y condiciones del conductor, la hora del día y la climatología.

Para el transporte ferroviario los factores que más influyen son: condiciones climatológicas, mantenimiento del sistema ferroviario y nivel de segregación con otros sistemas en especial con el viario según el proyecto UNITE (Unification of accounts and marginal costs for Transport Efficiency), siendo este último uno de los factores más importantes.

La metodología de la estimación de las externalidades se puede realizar de dos maneras. La primera de ellas surge del proyecto GRACE (Generalization of Research on Accounts and Cost Estimation). Esta calcula las externalidades según el nivel de riesgo de sufrir un accidente, en base a los volúmenes de tráfico y otros factores.

La otra metodología se basa en la valoración de las estadísticas de siniestralidad reales desarrollada por UNITE, IWW/INFRAS, OSD (Office for Spatial Development). Este es el método empleado en el estudio de referencia de este trabajo (CETPV 2006).

Para la estimación de los costes en base a los datos estadísticos reales se han elaborado unos sistemas de corrección de los mismos con el fin de tener en cuenta la siniestralidad que no aparece en las estadísticas. A continuación se muestran los coeficientes de corrección propuestos por el proyecto HEATCO (Developing Harmonised European Approaches for Transport Costing and Project Assessment). Hacen referencia al modo de transporte empleado y a la gravedad del siniestro.

8 Referencia bibliográfica 4. External costs in the transport sector: A literature review
9 Referencia bibliográfica 2. Handbook on estimation of external costs in the transport sector
10 Referencia bibliográfica 4. External costs in the transport sector: A literature review
COSTES EXTERNOS DEL TRANSPORTE EN LA CAPV: ACTUALIZACIÓN E INTERNALIZACIÓN

Recommendation for European average correction factors for unreported accidents

<table>
<thead>
<tr>
<th></th>
<th>Fatality</th>
<th>Serious injury</th>
<th>Slight injury</th>
<th>Average injury</th>
<th>Damage only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>1.02</td>
<td>1.50</td>
<td>3.00</td>
<td>2.25</td>
<td>6.00</td>
</tr>
<tr>
<td>Car</td>
<td>1.02</td>
<td>1.25</td>
<td>2.00</td>
<td>1.63</td>
<td>3.50</td>
</tr>
<tr>
<td>Motorbike/moped</td>
<td>1.02</td>
<td>1.55</td>
<td>3.20</td>
<td>2.38</td>
<td>6.50</td>
</tr>
<tr>
<td>Bicycle</td>
<td>1.02</td>
<td>2.75</td>
<td>8.00</td>
<td>5.38</td>
<td>18.50</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>1.02</td>
<td>1.35</td>
<td>2.40</td>
<td>1.88</td>
<td>4.50</td>
</tr>
</tbody>
</table>

Por su parte, el valor del riesgo de accidente según la gravedad del mismo varía de unas áreas geográficas a otras. A fin de tener en cuenta las diferencias de valoración según el área geográfica en que se produzca el accidente, se ha establecido, tras varios estudios de investigación elaborados al respecto, un sistema de valoración de la siniestralidad en la UE en función de los países que la componen.

A continuación podemos observar los resultados obtenidos para la valoración de las víctimas de la siniestralidad en la UE y países próximos dependiendo del área geográfica en que se produzca el accidente.

<table>
<thead>
<tr>
<th>Country</th>
<th>Value of safety per se</th>
<th>Direct and indirect economic costs</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fatality</td>
<td>Severe injury</td>
<td>Slight injury</td>
</tr>
<tr>
<td>Austria</td>
<td>1,600,000</td>
<td>209,000</td>
<td>16,000</td>
</tr>
<tr>
<td>Belgium</td>
<td>1,490,000</td>
<td>194,000</td>
<td>14,900</td>
</tr>
<tr>
<td>Cyprus</td>
<td>640,000</td>
<td>83,000</td>
<td>6,400</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>450,000</td>
<td>59,000</td>
<td>4,600</td>
</tr>
<tr>
<td>Denmark</td>
<td>2,000,000</td>
<td>260,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Estonia</td>
<td>320,000</td>
<td>41,000</td>
<td>3,200</td>
</tr>
<tr>
<td>Finland</td>
<td>1,680,000</td>
<td>205,000</td>
<td>15,800</td>
</tr>
<tr>
<td>France</td>
<td>1,470,000</td>
<td>191,000</td>
<td>14,700</td>
</tr>
<tr>
<td>Germany</td>
<td>1,510,000</td>
<td>196,000</td>
<td>15,100</td>
</tr>
<tr>
<td>Greece</td>
<td>760,000</td>
<td>93,000</td>
<td>7,600</td>
</tr>
<tr>
<td>Hungary</td>
<td>401,000</td>
<td>52,000</td>
<td>4,000</td>
</tr>
<tr>
<td>Ireland</td>
<td>1,340,000</td>
<td>252,000</td>
<td>19,400</td>
</tr>
<tr>
<td>Italy</td>
<td>1,300,000</td>
<td>169,000</td>
<td>13,000</td>
</tr>
<tr>
<td>Latvia</td>
<td>250,000</td>
<td>32,000</td>
<td>2,600</td>
</tr>
<tr>
<td>Lithuania</td>
<td>250,000</td>
<td>33,000</td>
<td>2,600</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>2,120,000</td>
<td>278,000</td>
<td>21,200</td>
</tr>
<tr>
<td>Malta</td>
<td>510,000</td>
<td>110,000</td>
<td>9,100</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1,620,000</td>
<td>271,000</td>
<td>16,200</td>
</tr>
<tr>
<td>Norway</td>
<td>2,630,000</td>
<td>342,000</td>
<td>28,300</td>
</tr>
<tr>
<td>Poland</td>
<td>310,000</td>
<td>41,000</td>
<td>3,100</td>
</tr>
<tr>
<td>Portugal</td>
<td>730,000</td>
<td>95,000</td>
<td>7,300</td>
</tr>
<tr>
<td>Slovakia</td>
<td>280,000</td>
<td>36,000</td>
<td>2,800</td>
</tr>
<tr>
<td>Slovenia</td>
<td>650,000</td>
<td>90,000</td>
<td>6,500</td>
</tr>
<tr>
<td>Spain</td>
<td>1,020,000</td>
<td>132,000</td>
<td>10,200</td>
</tr>
<tr>
<td>Sweden</td>
<td>1,703,000</td>
<td>230,000</td>
<td>17,000</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2,340,000</td>
<td>305,000</td>
<td>23,400</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1,650,000</td>
<td>215,000</td>
<td>16,500</td>
</tr>
</tbody>
</table>

Fuente: HEATCO (2006a); referencia bibliográfica 2. Handbook on estimation of external costs in the transport sector
2.2.3 Costes por contaminación del aire

Los costes externos asociados a la contaminación del aire que se produce por la actividad del transporte vienen determinados por el efecto que los componentes de dichas emisiones tienen en varios aspectos. Estos aspectos se refieren a la salud (mortalidad y morbilidad), los daños a edificios, las cosechas, los ecosistemas y la pérdida de servicios\(^\text{11}\).

Dichos impactos vienen determinados por los niveles de inmisión en las áreas geográficas afectadas. El problema más importante resulta de la creación de un modelo de dispersión que permita conocer cuáles son precisamente esos niveles de inmisión. En este sentido, el proyecto ExternE\(^\text{12}\) (CE) trabaja en una metodología que permite estimar, a partir de los niveles de emisión, cuál es ese proceso de dispersión de las emisiones, las funciones inmisión - respuesta por parte de los afectados y la valoración económica de dichas afecciones.

De todos los aspectos mencionados, los costes para la salud causados por la inmisión de partículas PM10 (tamaño inferior a 10 μm) provenientes de los tubos de escape de los vehículos, y de la transformación de otros contaminantes (ozono \(\text{O}_3\)), constituyen la categoría más importante con diferencia sobre el resto.

En lo que se refiere a los daños en edificios\(^\text{12 13}\), las sustancias que provocan impacto en ellos son los contaminantes ácidos: \(\text{NO}_x\) y \(\text{SO}_2\). En el ámbito de los impactos en la agricultura y en la biosfera, estos son provocados por los contaminantes ácidos, el ozono y el óxido de azufre. El impacto en la biodiversidad está causado por la eutrofización de las aguas derivada de la deposición de óxidos de nitrógeno y por la acumulación de metales pesados asociada al desgaste de los neumáticos\(^\text{13}\).

En el análisis por modos de transporte\(^\text{14}\), las emisiones referidas a la carretera dependen de la antigüedad del parque de vehículos, de la velocidad de los mismos, del tipo de combustible, de la tecnología de combustión empleada (filtros en el tubo de escape), del tamaño y factor de carga del vehículo y de la ubicación de la vía en la que se producen las emisiones.

Para el caso del transporte ferroviario, las emisiones dependen de la velocidad de los convoyes, el tipo de energía de tracción, el mix eléctrico y la ubicación de las plantas de generación de electricidad\(^\text{15}\).

El proceso de estimación de las externalidades asociadas a la contaminación del aire es el siguiente\(^\text{12 14}\):

- Cálculo de emisiones
- Aplicación de modelos de dispersión
- Evaluación de la exposición
- Aplicación de funciones de respuesta frente a la exposición
- Evaluación económica del daño

\(^{11}\) Referencia bibliográfica 5. External Costs. Research results on socio-environmental damages due to electricity and transport

\(^{13}\) Referencia bibliográfica 2. Handbook on estimation of external costs in the transport sector

\(^{14}\) Referencia bibliográfica 4. External costs in the transport sector: A literature review
Es de especial importancia, en el último punto, la asignación de valores monetarios a los diversos efectos, sobre todo en la salud, provocados por la contaminación del aire. Para ello existen trabajos de investigación, algunos enmarcados en el proyecto ExternE, en el que se asignan valores económicos a los daños en la salud. En éste se recomienda asignar valores que oscilan entre 50.000 y 75.000 € por cada año de vida perdido como consecuencia de la exposición a las emisiones del transporte. Estos valores corresponden a un valor de la vida estadística de 1 millón de euros, inferior al promedio empleado en siniestros ya que, en el caso del actual apartado, las externalidades afectan más a personas de edad avanzada.

La obtención de valores medios en €2002 del daño asociado a la contaminación del aire para el conjunto de la UE, se halla en la documentación aportada por el proyecto HEATCO mencionado anteriormente y que reprodujimos con traducción al castellano superpuesta al original en inglés.

<table>
<thead>
<tr>
<th>Impact</th>
<th>€2002 per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human health, effects in respective units</td>
<td></td>
</tr>
<tr>
<td>Años perdidos por exposición intensa</td>
<td>60.500</td>
</tr>
<tr>
<td>Años perdidos por enfermedad crónica</td>
<td>40.300</td>
</tr>
<tr>
<td>Nuevos casos de bronquitis crónica</td>
<td>153.000</td>
</tr>
<tr>
<td>Admisiones hospitalarias</td>
<td>1.900</td>
</tr>
<tr>
<td>Días de actividad limitada</td>
<td>76</td>
</tr>
<tr>
<td>Días de actividad poco limitada (tos, síntomas respiratorios leves)</td>
<td>31</td>
</tr>
<tr>
<td>Días de utilización de broncodilatadores</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Fuente: HEATCO; referencia bibliográfica 2. Handbook on estimation of external costs in the transport sector

2.2.4 Costes por ruido

Los costes externos asociados a los ruidos consisten en molestias a la población y en daños para la salud, éstos se deben al estrés que provoca en las personas la inmisión de altos niveles de presión sonora y que se acaban reflejando en problemas cardiovasculares con manifestaciones como los infartos de miocardio. Científicos de la OMS señalan que la exposición a niveles de ruido de 50 ó más decibelios basta para originar problemas cardiovasculares.

La estimación de los costes por molestias a la población se realiza en base a los niveles de ruido que los individuos están dispuestos a soportar; por otra parte, la estimación de los costes por daños en la salud, en especial por el aumento del riesgo de infarto, se realiza en base a las funciones de inmisión-respuesta\(^\text{15}\).

Los costes por molestias se manifiestan en forma de una reducción de la actividad en las zonas afectadas por la incomodidad que representa para las personas la exposición a ciertos niveles de ruido.

Los costes en la salud tienen múltiples vertientes. Con niveles de presión sonora por encima de los 85 dB(A) se producen daños en el sistema auditivo. Con niveles inferiores, en torno a 60 dB(A), se producen situaciones de tensión en el individuo asociadas a cambios en la

\(^{15}\) Referencia bibliográfica 2. Handbook on estimation of external costs in the transport sector
frecuencia cardiaca, aumento de la presión sanguínea y cambios hormonales. Además aumenta el riesgo de sufrir dolencias cardiovasculares. Así mismo se pueden producir alteraciones del sueño nocturno.

Los factores que influyen en los costes asociados al ruido son los siguientes:

- **Hora del día**: el ruido en horas nocturnas produce mayores afecciones por la alteración del sueño. Por este motivo en la directiva 2002/45/EC, en la que se requiere a los estados miembros la creación de mapas de ruido, los niveles sonoros en período nocturno se valoran con 10 dB(A) adicionales a fin de compararlos con los niveles diurnos.

- **Densidad de población en las proximidades de la fuente de emisión**: lo que da una idea del volumen de personas expuestas al ruido. Cuanto más próximas se encuentren a la fuente de emisión, mayores serán las molestias y daños causados.

- **Niveles de ruido existentes**: estos dependen del volumen de tráfico, su composición y la velocidad. En vías muy transitadas, el coste marginal por la incorporación de un nuevo vehículo es inferior al de vías poco transitadas. Es decir: con un gran ruido de fondo la perturbación por cada nuevo vehículo es menor que en áreas con bajo ruido de fondo.

Según los modos de transporte, en el caso de la carretera el ruido se produce principalmente por el sistema de propulsión y por la rodadura en el pavimento. La relación entre una y otra depende de la velocidad del vehículo. Los niveles de ruido también dependen de la composición del tráfico (camiones, motocicletas), de la edad de los vehículos y del estilo de conducción.

En el transporte ferroviario es la rodadura de la rueda sobre el carril la que condiciona los niveles de emisión de ruido. Estos niveles de ruido dependen de la velocidad del tren, el tipo de material móvil, las condiciones de las superficies de rueda y carril, del tipo de tracción y del mantenimiento de vehículos y vía. Los trenes de mercancías, en general, provocan unos mayores niveles de ruido que los de viajeros.

La estimación de los costes asociados al ruido se realiza por separado distinguiendo entre molestias en general y afecciones a la salud.

La estimación de los costes por molestias se realiza en base a la pérdida de valor de los inmuebles derivada de los niveles de inmisión sonora que se produce en ellos. Para su cálculo se ha creado una función que relaciona la disposición a pagar por el uso del inmueble por parte del usuario con los ingresos y los niveles de presión sonora.

\[MWTP = e^{2.348 + 0.00000509Y + 0.0497n} \]

Donde MWTP representa los costes marginales, Y es función del nivel de ingresos y n es función de la presión sonora.

En cuanto a los costes derivados de las afecciones a la salud, existen estudios de investigación en los que, igual que en el apartado anterior, se recomiendan valores por año de vida perdido de entre 50.000 y 75.000 €.

16 Referencia bibliográfica 2. Handbook on estimation of external costs in the transport sector
17 Referencia bibliográfica 4. External costs in the transport sector: A literature review
Sobre los costes de los tratamientos médicos, los valores establecidos en UNITE (2003b) son los que se reproducen a continuación en €2000 con traducción al castellano sobre el original en inglés.

<table>
<thead>
<tr>
<th>Condición</th>
<th>Costes médicos</th>
<th>Costes por baja</th>
<th>Disposición a pagar por evitar los daños</th>
<th>Total por caso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infarto de miocardio (no mortal, 8 días en el hospital y 24 días en casa)</td>
<td>4,700</td>
<td>2,800</td>
<td>15,000</td>
<td>22,500</td>
</tr>
<tr>
<td>Angina de pecho (severa, no mortal, 5 días en el hospital y 15 días en casa)</td>
<td>2,950</td>
<td>1,750</td>
<td>9,400</td>
<td>14,100</td>
</tr>
<tr>
<td>Hipertensión (tratamiento, 6 días en el hospital y 12 días en casa)</td>
<td>1,800</td>
<td>1,575</td>
<td>550</td>
<td>3,925</td>
</tr>
<tr>
<td>Costes anuales por alteración del sueño</td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

2.2.5 Costes por cambio climático

La estimación de los daños asociados al cambio climático es compleja debido a que se refiere a impactos a largo plazo con la consecuente dificultad de anticipar resultados. Por este motivo también resulta difícil asignar esos impactos a los modos de transporte en una determinada zona. La estimación de los costes se puede realizar bien mediante la previsión de las posibles afecciones, bien mediante la asunción de las medidas estratégicas establecidas para evitar el mencionado cambio climático.

El cambio climático tiene su origen en las emisiones de determinados gases: CO₂, N₂O y CH₄ entre otros. Las consecuencias previstas son las siguientes¹⁹:

- Aumento del nivel del mar.
- Modificaciones en el uso de la energía: reducción en el uso de calefacciones pero aumento en el uso de aire acondicionado.
- Impacto en la agricultura: dependiendo de la latitud en que nos encontremos y la variación de la pluviosidad.
- Disponibilidad de agua.
- Impactos en la salud: mayores problemas por el aumento de temperatura en verano y disminución de los mismos por el descenso de temperatura en invierno.
- Ecosistemas y biodiversidad: extinción y desplazamiento de especies entre otros problemas.
- Mayores catástrofes naturales.

¹⁹ Referencia bibliográfica 2. Handbook on estimation of external costs in the transport sector
La estimación de los costes por cambio climático se basa en el cálculo de las emisiones, principalmente dióxido de carbono, provocada por la actividad del transporte. Para ello se procede calculando el volumen de vehículos–km del sistema de transporte, se multiplica el resultado por los factores de emisión de gases de efecto invernadero, se hace la equivalencia del conjunto de gases a emisiones de CO2 y posteriormente este resultado se multiplica por un factor de coste de la tonelada de CO220.

El factor de costes de las emisiones se obtiene de los objetivos de reducción de emisiones o de la estimación de daños asociados a esas emisiones.

En cuanto a los factores de coste en función de los objetivos de reducción de emisiones, según el sistema europeo de comercio de emisiones, para el periodo 2008 – 2012 se estima un precio de 20 a 25 €/Tm de CO2. Recientemente se ha propuesto por parte de la CE y algunos estados miembros unos objetivos de reducción de emisiones para 2020 (post-Kyoto) que deberían modificar los factores de coste mencionados. Algunos estudios indican que la evolución del costes de la Tm de CO2 pasará a ser de 65 € en el año 2030.

En el caso de optar por la estimación de daños, el procedimiento se apoya en modelos de previsión de impactos y, posteriormente, en su valoración económica. Algunos valores recomendados para Alemania y Suiza según el (DLR Deutsches Zentrum für Luft- und Raumfahrt – Instituto de Investigación Aeroespacial Alemán, 2006), sitúan el factor de costes derivado de la estimación de impactos en unos 70 €/Tm de CO2. La tendencia es que el precio de la tonelada de CO2 se ha de incrementar con el paso de los años20.

En el caso del ferrocarril, en este apartado sólo se consideran los trenes de tracción diesel. El impacto en el cambio climático de los trenes de tracción eléctrica se valora en el concepto de costes indirectos.

2.2.6 Costes para la naturaleza y el paisaje

El impacto provocado por la actividad del transporte tiene tres componentes: pérdida de hábitats, fragmentación de hábitats y pérdida de calidad de los mismos20.

Entre las metodologías empleadas para la estimación de los costes, citamos las siguientes.

- Costes de reparación por la perturbación de los ecosistemas (por ruido, efecto barrera o impacto paisajístico). (INFRAS/IWW, 2000/200421).
- Aplicación de precios estándar para la valoración del impacto asociado a la contaminación del aire. (NewExt, 200422).

2.2.7 Costes por contaminación de suelo y agua

El impacto más importante del transporte por carretera en la contaminación de los suelos viene dado por las emisiones de metales pesados y de hidrocarburos aromáticos policíclicos (HAP). Estas sustancias pueden causar daños en la vegetación y llegar a producir la disminución de la fertilidad del suelo a lo largo de la infraestructura de transporte, además de acumularse en animales o personas. Las metodologías aplicables se basan en: costes de reparación de las áreas contaminadas (INFRAS/IWW, 2000/200421); o en la estimación del

20 Referencia bibliográfica 2. Handbook on estimation of external costs in the transport sector
21 Referencia bibliográfica 7. External Costs of Transport. Update Study
22 Referencia bibliográfica 8. New Elements for the Assessment of External Costs from Energy Technologies
daño causado en la salud de las personas por la emisión de metales pesados en el suelo, el aire o el agua (NewExt, 200423).

Como costes de reparación se estima una cantidad de 36 €/m3 (UNITE, 2000c, EU24).

2.2.8 Costes por efectos indirectos

Los efectos derivados de la producción de energía, de la fabricación de vehículos y de la construcción de las infraestructuras son causa también de la existencia de costes externos. Ha de considerarse de todos modos que estas externalidades se están produciendo en otros mercados aparte del transporte, como sería el mercado de la energía. Los procesos más importantes causantes de las externalidades son los que se apuntan a continuación.

- **Producción de la energía (precombustión):** este proceso genera impactos debido a la extracción, transporte y transformación de la materia prima para obtener el combustible. El impacto se considera directamente proporcional al volumen de energía consumida. En el caso de la energía eléctrica para la tracción de trenes, resulta esencial conocer la composición del mix eléctrico de las fuentes a partir de las cuales se genera dicha energía (valores sombra desarrollados en el proyecto ExternE). En el caso de la energía nuclear se hace una valoración específica del riesgo que varía entre 0,2 y 0,3 céntimos de € el kWh (UBA, 2006b 24).

- **Fabricación, mantenimiento y desguace de vehículos:** materializado en emisiones contaminantes al aire, agua y suelos y en gases de efecto invernadero.

- **Construcción y mantenimiento de infraestructuras:** llevan asociados la emisión de contaminantes.

Algunos estudios se limitan a valorar sólo los efectos en el cambio climático, ya que estos son globales, y no la contaminación del aire que, al ser un fenómeno local, es difícil de valorar por la dificultad de ubicar las fuentes de emisiones. Otros además incluyen la contaminación del aire y el riesgo nuclear.

2.2.9 Otros costes en áreas urbanas

El tráfico motorizado en áreas urbanas tiene diversos efectos sobre la movilidad no motorizada: supone una barrera al movimiento de peatones y ciclistas con la consecuente pérdida de tiempo, y la ocupación de espacio limita el desarrollo de otras actividades en el entorno urbano25.

La estimación de los costes asociados a estos efectos se realiza con diferentes metodologías:

- Mediante la medición de las pérdidas de tiempo para los peatones y ciclistas

- Mediante el establecimiento de costes de compensación para la realización de infraestructuras destinadas a la movilidad no motorizada.

Otros posibles efectos son los impactos visuales del transporte en zona urbana debido al tráfico y a las infraestructuras. Éstos son difíciles de valorar y no existen hoy en día resultados fiables.

23 Referencia bibliográfica 8. New Elements for the Assessment of External Costs from Energy Technologies

24 Referencia bibliográfica 2. Handbook on estimation of external costs in the transport sector
2.2.10 Costes por dependencia energética

El desigual reparto geográfico de los recursos energéticos genera un nuevo concepto de costes externos en forma de dependencia de los países productores de petróleo. Si bien hay estudios que han valorado esta dependencia energética, pocos han sido los que la han relacionado con la actividad del transporte. En el caso de Estados Unidos (Greene y Ahmad, 2005) se ha estudiado este fenómeno separándolo en tres categorías:

- Transferencia de riqueza de los países consumidores a los países productores
- Pérdidas del producto interior bruto (PIB)
- Ajustes macroeconómicos derivados de variaciones bruscas del precio del petróleo

2.3 CONCLUSIONES

Una vez visto el diagnóstico de los procesos de análisis de los costes externos del transporte a nivel internacional, vamos a determinar qué conceptos vamos a emplear en la estimación de los mismos para el País Vasco. Para ello tomamos como referencia el anterior estudio CETPV. En este estudio se estimaron las siguientes categorías de costes:

- Congestión
- Siniestralidad
- Contaminación del aire
- Ruido
- Cambio climático
- Costes para la naturaleza y el paisaje
- Costes adicionales en áreas urbanas
- Efectos indirectos

Como podemos observar, las cuatro primeras constituyen los conceptos principales empleados habitualmente en la mayoría de los estudios de costes externos, tal y como se ha desarrollado en el presente capítulo. En aras de obtener una secuencia partiendo del estudio original, vamos a proceder a incluir los mismos conceptos que ya se incluyeron en el estudio de referencia. Sobre las otras dos categorías que se han desarrollado en el diagnóstico – costes por contaminación de suelo y agua y costes por dependencia energética –, dada la complejidad de su estimación y la falta de referencias adecuadas, no van a ser empleadas en este estudio.

Referencia bibliográfica 9. Costs of U.S. Oil Dependence
3 Marco legislativo. Políticas de internalización

La actividad del transporte contribuye significativamente al crecimiento económico y hace posible la existencia de un mercado global. Sin embargo esta actividad no sólo repercute en la sociedad de forma positiva, también implica la generación para ésta de unas inconveniencias en forma de costes externos.

La internalización de estos efectos negativos implica que se tengan en cuenta por parte de los usuarios del transporte a la hora de decidir la realización de un viaje. Esto puede llevarse a cabo directamente mediante sistemas de regulación (medidas de control), o indirectamente mediante incentivos a los propios usuarios con los denominados instrumentos de mercado (peajes, tasas…) o mediante la combinación de ambos sistemas.

El enfoque de la Comisión Europea (CE) frente a los costes externos del transporte se basa en el concepto de la tarificación del coste social marginal de las externalidades asociadas al transporte. De hecho el libro blanco de la estrategia sobre el transporte que data de 2001 y su revisión en 2006 subrayan la necesidad de un sistema de tarificación del transporte que tenga en cuenta los costes externos.

Mediante el desarrollo de diversos estudios llevados a cabo en este aspecto, se ha concluido que la internalización de los costes externos a través de los instrumentos del mercado (sistemas de pago) puede ser un método eficaz en la reducción de los impactos negativos que están asociados a esta actividad. Esta tarificación conllevaría un mayor rendimiento del sistema de transporte, por ejemplo mediante un uso más eficaz de las infraestructuras y la energía; asimismo garantizaría un mejor equilibrio entre modos de transporte mediante la correcta imputación de los costes asociados a los mismos, además de reducir la siniestralidad -como coste externo- y el impacto ambiental que provoca el sector del transporte.

Al amparo de estas conclusiones se han desarrollado algunas directivas consistentes básicamente en la aplicación de tarifas por la utilización de infraestructuras tanto viarias como ferroviarias.

Entre las primeras destaca la ya popular Euroviñeta que, con algunas modificaciones fue adoptada en 2006. Esta directiva permite a los estados miembros el cobro de tasas y peajes a los vehículos pesados por el uso de las infraestructuras viarias. Sin ánimo de extendernos, la susodicha directiva sirve de base para la consecución de una política tarifaria europea, al tiempo que pretende la internalización de los costes externos, si bien establece ciertos límites de recaudación determinados por el propio coste de la infraestructura, con algunas excepciones.

A continuación vamos a mostrar y analizar algunas de las medidas destinadas a la internalización de los costes externos del transporte existentes en la actualidad. En primer lugar analizaremos el marco legislativo, para después mostrar un catálogo de medidas, con su correspondiente desarrollo, que se han llevado a cabo a fin de internalizar las externalidades del transporte, de reducirlas o de ambas cosas a la vez.

26 Referencia bibliográfica 10. Libro Blanco - La política Europea de transportes de cara al 2010: la hora de la verdad
27 Referencia bibliográfica 11. Directiva 1999/62/CE del Parlamento Europeo y del Consejo
3.1 MARCO LEGISLATIVO

El marco legislativo se centra sobre todo en la Directiva “Euroviñeta”\(^{28}\) que regula la circulación de los vehículos de mercancías de transporte por carretera en el ámbito de la UE.

En el ámbito del transporte ferroviario se ha creado la Directiva 2001/14/CE del Parlamento Europeo y del Consejo, de 26 de febrero de 2001, relativa a la adjudicación de la capacidad de infraestructura ferroviaria, aplicación de cánones por su utilización y certificación de la seguridad. Esta permite la internalización de las externalidades en determinadas condiciones.

En lo que se refiere a los vehículos de turismo, existe una propuesta de Directiva\(^{29}\) sobre los impuestos aplicables a los automóviles de turismo.

3.1.1 La Euroviñeta

La Directiva Euroviñeta (1999/62/EC)\(^{28}\), con las posteriores modificaciones, fue adoptada en marzo de 2006. Tiene entre sus pretensiones la armonización de los sistemas de cobro y el establecimiento de mecanismos equitativos de imputación del coste de la infraestructura a los transportistas.

Esta directiva se limita a los vehículos industriales que superen un determinado peso total en carga (12 Tm y 3,5 Tm a partir de 2012 cuando el Estado miembro no lo considere inoportuno), y entre sus objetivos se encuentra el del fomento de la utilización de vehículos más respetuosos y menos contaminantes para el medio ambiente y menos agresivos para la infraestructura viaria mediante la diferenciación de impuestos y gravámenes.

Las infraestructuras viarias en las que esta directiva propugna el establecimiento de peajes y/o tasas por su utilización son: autopistas, puentes, túneles y puertos de montaña de la red transeuropea de carreteras, si bien pueden aplicarse también a otras vías que no formen parte de la red transeuropea.

En esta imagen podemos observar la definición de la red transeuropea de carreteras. En línea discontinua figuran las vías que pueden pasar a ser de alta capacidad. Fuente: Decisión No 1692/96/CE del Parlamento Europeo y del Consejo de 23 de julio de 1996 sobre las orientaciones comunitarias para el desarrollo de la red transeuropea de transporte\(^{30}\).

\(^{28}\) Referencia bibliográfica 11. Directiva 1999/62/CE del Parlamento Europeo y del Consejo

\(^{29}\) Referencia bibliográfica 13. Propuesta de Directiva del Consejo sobre los impuestos aplicables a los automóviles de turismo

\(^{30}\) Referencia bibliográfica 15. Decisión No 1692/96/CE del Parlamento Europeo y del Consejo de 23 de julio de 1996
Las formas de imputación de costes establecidas en la presente directiva son: los impuestos sobre vehículos, los peajes y las tasas por la utilización de infraestructuras.

Entre los aspectos más destacados de la directiva, figura el que otorga la posibilidad a los Estados miembros de decidir el destino de un porcentaje del importe del derecho de uso (tasa) o del peaje. Éste puede ser dedicado tanto a la protección del medio ambiente como al desarrollo equilibrado de las redes de transporte.

Los impuestos sobre los que es posible actuar en España bajo esta directiva son: el impuesto sobre vehículos de tracción mecánica y el impuesto sobre actividades económicas (en lo que se refiere a las exacciones percibidas sobre los vehículos de motor).

La directiva establece los tipos mínimos del conjunto de impuestos que se aplicarán a los vehículos objeto de la presente. Estos tipos están en función del número de ejes y peso máximo de los mismos.

La directiva define categorías de vehículos según los niveles de emisiones de los mismos, que van desde la categoría de vehículos EURO 0 hasta la EURO V de mayores a menores emisiones, y el VEM, categoría con menores emisiones. Estas categorías son de utilidad para el establecimiento de peajes y tasas.

A continuación se definen los niveles de emisiones de cada una de las categorías establecidas en la presente directiva.
LÍMITES DE EMISIÓN

1. Vehículo «EURO 9»

<table>
<thead>
<tr>
<th>Masa de monóxido de carbono (CO) g/kWh</th>
<th>Masa de hidrocarburos (HC) g/kWh</th>
<th>Masa de óxidos de nitrógeno (NOx) g/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,3</td>
<td>2,6</td>
<td>15,8</td>
</tr>
</tbody>
</table>

2. Vehículos «EURO I»/«EURO II»

<table>
<thead>
<tr>
<th>Vehículo «EURO I»</th>
<th>Masa de monóxido de carbono (CO) g/kWh</th>
<th>Masa de hidrocarburos (HC) g/kWh</th>
<th>Masa de óxidos de nitrógeno (NOx) g/kWh</th>
<th>Masa de partículas (PM) g/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,9</td>
<td>1,23</td>
<td>9,0</td>
<td>0,4 (1)</td>
</tr>
<tr>
<td>Vehículo «EURO II»</td>
<td>4,0</td>
<td>1,1</td>
<td>7,0</td>
<td>0,15</td>
</tr>
</tbody>
</table>

(1) En el caso de los motores de potencia inferior o igual a 85 kW se aplicará un coeficiente de 1,7 al valor límite de las emisiones de partículas.

3. Vehículos «EURO III»/«EURO IV»/«EURO V»/«VEM»

<table>
<thead>
<tr>
<th>Vehículo «EURO III»</th>
<th>Masa de monóxido de carbono (CO) g/kWh</th>
<th>Masa de hidrocarburos (HC) g/kWh</th>
<th>Masa de óxidos de nitrógeno (NOx) g/kWh</th>
<th>Masa de partículas (PM) g/kWh</th>
<th>Humos m⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,1</td>
<td>0,66</td>
<td>5,0</td>
<td>0,10 (2)</td>
<td>0,8</td>
</tr>
<tr>
<td>Vehículo «EURO IV»</td>
<td>1,5</td>
<td>0,46</td>
<td>3,5</td>
<td>0,02</td>
<td>0,5</td>
</tr>
<tr>
<td>Vehículo «EURO V»</td>
<td>1,5</td>
<td>0,46</td>
<td>2,0</td>
<td>0,02</td>
<td>0,5</td>
</tr>
<tr>
<td>Vehículo «VEM»</td>
<td>1,5</td>
<td>0,25</td>
<td>2,0</td>
<td>0,02</td>
<td>0,15</td>
</tr>
</tbody>
</table>

(1) Un ciclo de ensayo se compone de una secuencia de puntos de ensayo en la que cada punto se define por una velocidad y un par que el motor debe respetar en modos estabilizados (ensayo ESC) o en condiciones de funcionamiento transitorias (ensayos ETC y EURO).
(2) 0,13 para los motores cuya cilindrada unitaria sea inferior a 0,7 dm³ y cuyo régimen normal sea superior a 3 000 min⁻¹.

Por su parte, las definiciones de los conceptos de peaje y tasa que realiza la directiva son las siguientes.

- **Peaje**: pago de un importe determinado por parte de un vehículo por recorrer una distancia determinada en las infraestructuras objeto de esta directiva, basado en la distancia recorrida y el tipo de vehículo.
- **Tasa**: pago de un importe determinado que dé derecho a un vehículo a utilizar las infraestructuras objeto de esta directiva durante un periodo de tiempo determinado.

No podrá exigirse a ninguna categoría de vehículos el pago simultáneo de peajes y tasas por la utilización del mismo tramo de carretera. No obstante, los Estados miembros podrán exigir también peajes en redes en que se perciban tasas, por la utilización de puentes, túneles y puertos de montaña.
El importe de los peajes se basará únicamente en el principio de recuperación de los costes de las infraestructuras. Estos peajes se podrán modular por motivos como la lucha contra el daño medioambiental, la lucha contra la congestión del tráfico, la limitación de los daños a la infraestructura, la utilización óptima de la infraestructura de que se trate o el fomento de la seguridad vial. Además, las tarifas de peaje podrán variarse en función de la categoría EURO de los vehículos (siempre que las diferencias máximas entre categorías sean inferiores al 100%). Asimismo, permite la discriminación tarifaria por hora del día.

Existen algunas excepciones en la aplicación de las tasas en regiones montañosas que consisten en la posible aplicación de un recargo en los tramos en los que haya graves problemas de congestión o se afecte a la libre circulación de los vehículos, o si la utilización del tramo por los vehículos da lugar a daños ambientales significativos.

El importe de las tasas para todas las categorías de vehículos será fijado por cada Estado miembro de forma que no se sobrepasen los importes máximos siguientes, en euros/año.

<table>
<thead>
<tr>
<th>Clase EURO</th>
<th>Mínimo de tres ejes</th>
<th>Mínimo de cuatro ejes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EURO 0</td>
<td>1 332</td>
<td>2 233</td>
</tr>
<tr>
<td>EURO I</td>
<td>1 158</td>
<td>1 933</td>
</tr>
<tr>
<td>EURO II</td>
<td>1 008</td>
<td>1 681</td>
</tr>
<tr>
<td>EURO III</td>
<td>876</td>
<td>1 461</td>
</tr>
<tr>
<td>EURO IV y menos contaminantes</td>
<td>797</td>
<td>1 329</td>
</tr>
</tbody>
</table>

La presente directiva no impide a los Estados miembros la aplicación de tasas reguladoras destinadas a combatir congestiones de tráfico en momentos o lugares determinados. Asimismo tampoco impide la aplicación de tasas destinadas a combatir los impactos sobre el medio ambiente, incluida la mala calidad del aire especialmente en zonas urbanas, incluyendo las de la red transeuropea que atraviesan zonas urbanas.

3.1.1 Comentarios

La directiva objeto de este apartado tiene como elemento de vanguardia la introducción de tasas en función de los niveles de emisiones de los vehículos, es decir, de los costes externos asociados a la actividad que desarrollan. Esta discriminación permite, por un lado, establecer un sistema de internalización de costes más equilibrado, al tiempo que supone un incentivo para la renovación del parque de vehículos industriales con unidades que podríamos catalogar como “más limpias”; esto conlleva la reducción de las externalidades asociadas a la actividad del transporte. Por tanto, podríamos entender que busca la consecución de los dos objetivos definidos al comienzo de este capítulo y que son: la internalización de los costes externos y la reducción de los mismos.

Sin embargo, incluye algunos aspectos que podríamos definir como problemáticos. La propia definición de tasa permite la utilización ilimitada de una infraestructura dentro de un periodo de tiempo determinado. Esto conlleva una falta de proporcionalidad entre los costes externos generados y el coste afrontado por el usuario de la vía. Si además resulta incompatible la aplicación de tasas y peajes en una misma vía (salvo excepciones), se
complica la posibilidad de obtener una proporcionalidad entre el coste externo generado y el coste asignado al usuario.

En cierta medida esto podría resolverse mediante la discriminación de las tarifas de peaje en función de la categoría del vehículo, como se menciona en la misma directiva. De esta manera, mediante la aplicación de la Euroviñeta se podrá hacer frente a las externalidades generadas por la actividad del transporte al menos en una cantidad equivalente al coste de la infraestructura, y en los casos en los que la propia directiva propugna, se podrá llegar más allá de los mencionados costes de la infraestructura.

En otro orden de cosas, incluye otros aspectos positivos como es instrumentalizar las medidas impositivas a fin de reducir los problemas (y costes externos) de congestión y los problemas (y costes) ambientales generados por la actividad del transporte.
3.1.2 **Directiva 2001/14/CE de infraestructura ferroviaria**

La presente Directiva se refiere a la aplicación de cánones por la utilización de infraestructura ferroviaria. En un principio estos cánones tienen como función la financiación de la actividad del administrador de infraestructuras. Tal y como se comenta dentro del texto “El canon por utilización de acceso mínimo y acceso por la vía a instalaciones de servicio será equivalente al coste directamente imputable a la explotación del servicio ferroviario”.

Sin embargo, dicha Directiva también recoge la posibilidad de que el canon de infraestructuras incluya un canon que refleje la escasez de capacidad de un determinado segmento identificable de la infraestructura durante períodos de congestión.

También se hace mención de que el canon por utilización de infraestructuras podrá ser modificado para tener en cuenta el coste de los efectos ambientales causados por la explotación del servicio ferroviario, y dicha modificación deberá diferenciarse en función de la magnitud del efecto causado. Sin embargo, una tarificación de los costes ambientales que dé lugar al aumento de la cifra global de ingresos del administrador de infraestructuras sólo estará autorizada si existe una tarificación comparable también para otros modos de transporte que compitan con el ferrocarril.

De no existir una tarificación comparable de los costes ambientales en otros modos de transporte que compitan con el ferrocarril, las modificaciones no podrán tener como consecuencia ningún cambio en los ingresos del administrador de infraestructuras. Si se hubiera introducido una tarificación comparable de los costes ambientales en el ferrocarril y en otros medios de transporte y ello causara ingresos adicionales, corresponderá a los Estados miembros decidir el destino de los mismos.

Los Estados miembros podrán implantar por un período limitado un sistema que compense por el uso de la infraestructura ferroviaria los costes medioambientales, de accidentes y de infraestructura que no paguen los modos de transporte competidores -lo cual deberá acreditarse- cuando excedan de los costes equivalentes del ferrocarril.

3.1.2.1 **Comentarios**

Si bien la presente Directiva nace del espíritu de permitir un acceso a la red ferroviaria no discriminatorio por parte de las empresas que lo soliciten, profundizando de esta forma en el llamado mercado único, también incluye aspectos que permiten la internalización de los costes ferroviarios.

Dada la mejor disposición del ferrocarril frente a los costes externos que la carretera, la Directiva recoge que esa internalización sólo se podrá llevar a cabo si en los modos que compiten con él ya se aplican también medidas de internalización. Esta disposición garantiza que la internalización de costes no va a suponer un trato discriminatorio frente a otros modos que tienen asociado un mayor impacto, lo contrario redundaría en un incremento de los costes externos del transporte.

Especificamente se recoge la internalización de los costes de congestión, o dicho de otro modo, de escasez de infraestructura. Además también permite la aplicación de cánones destinados a internalizar los costes ambientales. En este caso, si no existen medidas de internalización para los modos que compiten con el ferrocarril, se hace mención expresa a que el conjunto de los cánones cobrados no podrá exceder los costes propios de la red. Esto

31 Referencia bibliográfica 12. Directiva 2001/14/CE del Parlamento Europeo y del Consejo
significa que los cánones habrán de ponderarse en función de las externalidades asociadas al uso de cada tramo de la red ferroviaria.

En caso de que los cánones derivados de la internalización de los efectos ambientales generen un montante superior al de los costes de explotación (caso de existir medidas similares en los modos en competencia) la directiva no especifica el destino del mismo, dejando al Estado miembro esa decisión. Por tanto, no se obliga a que los ingresos extraordinarios sean destinados a paliar específicamente los efectos causados por las externalidades del transporte.

Por otra parte, y en línea con la filosofía de reducción de las externalidades del sistema global de transporte, la Directiva prevé medidas que compensen el uso de la red ferroviaria cuando a los modos en competencia no se les imputen los costes derivados de la accidentalidad. Este punto permite por tanto equilibrar en cierto modo el acceso a los distintos modos teniendo en cuenta esta componente de los costes externos. No significa exactamente una medida de internalización, sino de reducción de las externalidades generadas en otros modos.
3.1.3 Propuesta sobre impuestos aplicables a los automóviles de turismo

Esta propuesta de Directiva prevé la reorganización de los sistemas de impuestos aplicables a los automóviles de turismo de los Estados miembros. Su objetivo es suprimir los obstáculos fiscales a los traslados de automóviles de turismo de un Estado miembro a otro para su uso permanente. Con la reestructuración de la base imponible de los impuestos aplicables a estos vehículos se pretende también favorecer un medio ambiente sostenible, reduciendo las emisiones de dióxido de carbono.

El documento dice textualmente: “los automóviles de turismo son una importante fuente de emisiones de CO₂ y revisten, por esta razón, especial importancia para el objetivo de la UE en materia de medio ambiente, esto es, el cumplimiento de los compromisos medioambientales adquiridos en virtud del Protocolo de Kioto. Las medidas fiscales constituyen uno de los tres pilares de la estrategia comunitaria para reducir las emisiones de CO₂ producidas por los automóviles. Un uso eficaz de medidas fiscales, junto con los compromisos asumidos por el sector del automóvil: ACEA (Asociación Europea de Fabricantes de Automóviles), JAMA (Asociación Japonesa de Fabricantes de Automóviles) y KAMA (Asociación Coreana de Fabricantes de Automóviles) y la información al consumidor, son esenciales para alcanzar el objetivo comunitario de 120 g de CO₂ por km en 2010, a más tardar”.

La introducción de un vínculo entre las emisiones de CO₂ y los impuestos de matriculación y el anual de circulación, se basará en el número de gramos de CO₂ emitidos por kilómetro por cada automóvil.

El total de ingresos fiscales derivados del componente de los impuestos anuales de circulación vinculado a las emisiones de CO₂ deberá representar al menos:

- Un 25 % en una primera fase;
- Un 50 % en una segunda fase.

La propuesta defiende, en definitiva, la disminución de las emisiones de gases de efecto invernadero mediante un sistema impositivo que incentiva aquellos vehículos que tienen asociados menores niveles de emisiones de esos gases. De esta manera se internalizan en cierta medida los costes externos por cambio climático y se incentiva, en consecuencia, la reducción de dichos costes.

32 Referencia bibliográfica 13. Propuesta de Directiva del Consejo sobre los impuestos aplicables a los automóviles de turismo
3.1.4 Medidas fiscales y ayudas económicas aplicadas en nuestro entorno

3.1.4.1 Medidas fiscales

En el caso de España, en 2008 entró en vigor la reforma del impuesto de matriculación33 que emplea criterios de emisiones a la hora de fijar el nivel impositivo de los vehículos. De esta forma, los vehículos que emitan menos de 120 gr de CO\textsubscript{2}/km quedarán exentos del pago de este impuesto, los que emitan entre 121 y 160 gr tendrán una imposición del 4,75%, entre 161 y 200 gr será del 9,75% y de más de 200 gr del 14,75%.

3.1.4.2 Ayudas económicas

También se han desarrollado planes destinados a incentivar la sustitución de vehículos antiguos por otros menos contaminantes, con bajos niveles de emisiones de CO\textsubscript{2}: Plan VIVE y Plan 2000 E.

El Plan VIVE otorga préstamos con facilidades de pago para la adquisición de vehículos M1 (Vehículos de motor con al menos cuatro ruedas diseñados y fabricados para el transporte de pasajeros) y N1 (Vehículos cuya masa máxima no supere las 3,5 toneladas, diseñados y fabricados para el transporte de mercancías) con alguna de las siguientes características:

En caso de adquisición de vehículo turismo de categoría M1:

- Que sus emisiones de CO\textsubscript{2} no sean superiores a 120 g/km (vehículo ecológico).
- Que sus emisiones de CO\textsubscript{2} no sean superiores a 140 g/km y además incorporen sistemas de control electrónico de estabilidad y detectores presenciales en plazas delanteras (vehículo Innovador).
- Que sus emisiones de CO\textsubscript{2} no sean superiores a 140 g/km y además incorporen un catalizador de tres vías para vehículos de gasolina o dispositivos EGR de recirculación de gases de escape para vehículos diesel.

En caso de adquisición de vehículo de transporte para actividad económica de categoría N1, que sus emisiones de CO\textsubscript{2} no sean superiores a 160 g/km.

El Plan 2000 E tiene por objeto la concesión de ayudas directas para la adquisición de vehículos M1 y N1 que reúnan alguna de las siguientes características:

Vehículos de turismo categoría M1:

- Emisiones de CO\textsubscript{2} no superiores a 120 gr./km (Vehículo ecológico).
- Emisiones de CO\textsubscript{2} no superiores a 149 gr./km y además incorporen sistemas de control electrónico de estabilidad y detectores presenciales en plazas delanteras (vehículo innovador).
- Emisiones de CO\textsubscript{2} no superiores a 149 gr./km e incorporen un catalizador de tres vías para vehículos de gasolina o dispositivos EGR de recirculación de gases de escape para vehículo diesel.

Vehículos de transporte de categoría N1 con emisiones de CO\textsubscript{2} no superiores a 160 gr./Km.

33 Referencia bibliográfica 14. Ley 34/2007, de 15 de noviembre, de calidad del aire y protección de la atmósfera
3.2 **MEDIDAS DE INTERNALIZACIÓN Y/O REDUCCIÓN DE COSTES**

Dentro del abanico de medidas que vamos a presentar, podemos distinguir aquellas que se refieren a la internalización de los costes externos en áreas urbanas y las destinadas a internalizar los costes externos de ámbito menos local. Entre las primeras destacan por su extensión geográfica, las medidas de peaje urbano. Éstas tienen una doble misión: por una parte el cobro al usuario de los costes externos generados (por congestión o emisiones), y por otra la disminución de esos costes externos mediante la reducción de la demanda de los modos menos eficaces (automóvil), y su encauzamiento hacia modos que provoquen menos costes externos (transporte colectivo).

Se podrá comprobar a lo largo de la lectura de los siguientes apartados que este doble objetivo sólo se consigue si a la imposición de tasas se le acompaña de una mejora de los medios de transporte público que recojan a aquellos usuarios que no estén dispuestos a pagar los costes externos generados por otros modos de transporte más contaminantes.

En este sentido queremos mencionar como introducción el caso de la ciudad de Nueva York. Allí se pretendió implantar un sistema de peaje para acceder al centro urbano; éste iría acompañado de fuertes inversiones en transporte público. Sin embargo las diferencias entre la administración estatal y municipal sobre la financiación del transporte público llevó al traste la aplicación de la media.

3.2.1 **Peaje urbano de Londres**

El peaje urbano de Londres es una tasa que se aplica a determinados conductores que circulan en la zona central de Londres y está fundamentado en el concepto económico de tarifas de congestión. Esta tasa diaria fue introducida en febrero de 2003. Su pago es satisfecho por el dueño de un vehículo que entra, sale o se desplaza por la zona delimitada desde las 7 de la mañana a las 6 de la tarde. No pagar la tasa implica una multa de 50 libras - estas multas suponen el 36% de los ingresos por peaje-. En la actualidad el peaje urbano (o carga de congestión) de Londres tiene una estructura de precios basada en los niveles de emisiones según el tipo de vehículo.

La zona acotada por el sistema de peaje urbano incluye el centro de la City de Londres y el West End, principales centros comerciales y financieros de la urbe. En la actualidad 136.000 londinenses viven dentro de la zona acotada (de una población total de 7 millones en el Gran Londres), pese a que se considera una zona más comercial que residencial.

En el mismo momento de la entrada en servicio del peaje urbano se realizó un incremento de la oferta de transporte público para acceder a la zona restringida, ya que no se trataba de limitar el acceso de las personas, sino de los vehículos.

3.2.1.1 Funcionamiento del sistema

El control de los vehículos que circulan dentro de la zona se realiza mediante cámaras de circuito cerrado de televisión. De esta manera se consigue que la mayoría de vehículos circulando dentro de la zona sean grabados en vídeo. El peaje se aplica solamente una vez por día, independientemente de cuantas veces el usuario sea detectado o cruce el área acordonada de control.

Referencias bibliográficas

34 Referencia bibliográfica 19. Página web del peaje urbano de Londres

35 Referencia bibliográfica 20. Wikipedia, peaje urbano de Londres
El nivel de exactitud de la tecnología obliga a que sean revisados por miembros del equipo de gestión de tráfico de la ciudad, lo que conlleva un coste anual de 98 millones de libras de mantenimiento del sistema.

Los conductores privados están obligados a pagar la tasa el día en que entran en la zona (o antes) tanto si son vistos como si no. Las flotas de vehículos comerciales gozan de otra regulación; éstas pueden registrar un conjunto de vehículos y se le cobran cinco libras a los vehículos que son vistos entrando en el área.

El pago del peaje se puede realizar vía Internet, vía SMS, en tiendas con una máquina especial o por vía telefónica. Ya se ha comenzado el cambio hacia el sistema de pago de peaje automático, es decir, el pago se realizará automáticamente al pasar por la zona de control. Si bien esto reducirá los costes administrativos, también se producirá una reducción de ingresos derivados de las multas (se impone una media de 100.000 multas cada mes).

En la actualidad, el peaje urbano de Londres ha establecido un sistema de exención de la tasa a los vehículos que tengan asociado un menor impacto en el medio ambiente. Los vehículos que reúnen las condiciones necesarias se pueden beneficiar de esta exención siempre que se hayan registrado a tal efecto, éstos son, entre otros, los que figuran a continuación.

- Vehículos propulsados eléctricamente
- Triciclos con motor de hasta 1 m de ancho y hasta 2 m de longitud
- Algunos vehículos de combustible alternativo que cumplan una estricta normativa de emisiones, (p. ej. gas, vehículos eléctricos y vehículos de pilas de combustible)

3.2.1.2 Resultados obtenidos

En un informe elaborado sobre los primeros seis meses del peaje, se extrajo como principal conclusión que el volumen de automóviles que entran diariamente en la zona de peaje se había reducido en 60.000 vehículos, lo que significa una bajada del 30% de los mismos. Alrededor del 50-60% de los conductores de estos vehículos comenzaron a desplazarse usando el transporte público, entre el 20-30% utilizaba rutas alternativas y el resto compartía coche, reducía el número de viajes, circulaba en horas en las que no hay peaje, o utilizaba motos o bicicletas. Se estimó que la duración media de los viajes se había reducido en un 15%.

En ese mismo informe también se estimó que no se apreciaba impacto, ni positivo ni negativo en la seguridad del tráfico tras la introducción del peaje.

Otro informe establecía que el intento de reducir los atascos no se iba a lograr, sugiriendo un fracaso en la política del peaje urbano. Sin embargo, ese informe se refiere a Londres en su conjunto, por lo que el fracaso en el intento de reducir los atascos se debe en gran medida a lo que ocurre en los barrios fuera de la zona de peaje, donde es mucho más difícil establecer un servicio de transporte público más efectivo y donde se utiliza el automóvil más habitualmente. Algunos estudios sugieren que el peaje urbano simplemente amplía los atascos del centro de las ciudades a las afueras.
3.2.1.3 Comentarios

En la práctica, el peaje urbano de Londres se ha constituido como un sistema de internalización de costes externos, el cual ha traído consigo una reducción de los mismos, al menos en el área en donde está implantado. Surgen dudas sobre si esta reducción de externalidades no ha consistido únicamente en el traslado de las mismas a otros lugares del entorno. Sin embargo, el hecho de que una parte importante de la demanda que ha dejado de ir a la zona haya optado por el transporte público menos contaminante (más del 50% sobre un 30% de reducción de vehículos), deja entrever que se ha conseguido también una reducción de las externalidades del sistema global de transporte. Precisamente ese trasvase de usuarios al transporte público ha sido posible gracias al aumento de la oferta del mismo que se realizó en el momento de la implantación del peaje urbano.

Por otra parte, el hecho del alto coste administrativo del sistema hace que parte de los ingresos se dediquen al mantenimiento del mismo y no reviertan directamente a la sociedad en forma de compensaciones por los costes externos generados por el transporte.
3.2.2 Peaje urbano de Estocolmo

El denominado Impuesto de Congestión de Estocolmo es un sistema de peajes urbanos fundamentado, como el de Londres, en el concepto económico de tarifas de congestión.

3.2.2.1 Descripción del sistema

Este peaje fue implantado de forma permanente a partir de agosto de 2007, después de un periodo de prueba de siete meses, tras el cual se celebró un referéndum en la zona metropolitana que aprobó la continuación del sistema. El cobro se aplica a todos los vehículos que entran y salen del centro de la ciudad de Estocolmo.

Su objetivo principal es el de reducir, tanto la congestión del tráfico, como la contaminación ambiental (atmosférica y acústica) en el centro de la ciudad. Los fondos recaudados con este tributo son utilizados para la construcción de nuevas vías, dentro y alrededor de Estocolmo.

El sistema consiste en la colocación de un dispositivo de telecomunicación, similar al telepeaje de las autopistas, en el parabrisas del vehículo cuya señal que es detectada por los equipos electrónicos instalados en los pórticos ubicados en la entrada de zona de cobro. Automáticamente se produce el cargo a la tarjeta de crédito o débito del titular del coche. Es el mismo sistema que el empleado en las autopistas de peaje.

Dentro del espíritu de las tarifas de congestión, los precios del peaje varían según el horario, cobrando más caro en horas punta y más barato entre las 9 de la mañana y las 3 de la tarde. No se cobra en sábados, domingos o festivos, ni en el mes de julio (laboralmente similar al mes de agosto de nuestras latitudes).

3.2.2.2 Comentarios

Como se ha podido entender de la descripción realizada, los objetivos de este sistema de peaje son los de reducir los costes externos del tráfico, tanto de congestión como ambientales, e internalizar los que se produzcan, destinando los ingresos obtenidos de los usuarios del sistema de transporte a la construcción de infraestructuras.

El destino de los ingresos obtenidos puede resultar discutible. Si bien por un lado la mejora de las infraestructuras puede redundar en la reducción de las externalidades, p.e: reduciendo la congestión, mejorando la seguridad, alejando de los lugares poblados las fuentes de emisión de contaminantes…, también puede suceder que esas infraestructuras generen nuevas externalidades. Éstas estarían determinadas tanto por la propia construcción (los denominados efectos indirectos) como por una generación de nueva demanda de transporte.

En cuanto a su propio sistema de funcionamiento, su alto grado de automatización permite reducir los costes administrativos y de mantenimiento, aunque obliga al usuario a disponer de un vehículo un sistema de telecomunicación. Además, al cobrar por cada paso que realiza el vehículo, la proporcionalidad entre el pago y la distancia recorrida es más clara que en el caso de Londres (tarifa diaria), con lo que consigue una imputación más ajustada a los costes externos generados.

Por otra parte, el establecimiento de diferentes peajes en función de la franja horaria, permite ajustar la tarifa a los costes externos de congestión.

Referencia bibliográfica 21. Página web del peaje urbano de Estocolmo
Referencia bibliográfica 22. Wikipedia, impuesto de congestión de Estocolmo
3.2.3 Peaje urbano de Singapur y medidas complementarias

El sistema denominado “Tarifas de congestión de Singapur” en su traducción al castellano, es el más antiguo de los existentes de características similares. Se implantó en el año 1975 y comenzó funcionando como un sistema de peaje manual, que se transformó en electrónico en el año 1998. Su finalidad es la de reducir los problemas de congestión de tráfico, dada la escasez de sueño que existe en aquella zona. Su funcionamiento es similar al de la ciudad de Estocolmo.

3.2.3.1 Descripción del sistema

La política de Singapur ha estado dirigida a la restricción de uso del automóvil, por lo que esta medida ha estado acompañada de otras destinadas a limitar la adquisición de vehículos, ya sea a través de la imposición de altos costes a la propiedad de los mismos, o mediante restricciones en el crecimiento de la flota de vehículos privados. Estas medidas incluyen un alto impuesto anual por concepto de derechos de circulación, elevados aranceles aduaneros a la importación de vehículos y altas tarifas para el registro de vehículos.

En paralelo a estas medidas se han realizado fuertes inversiones en el transporte público y en esquemas de "Park and Ride" o aparcamientos de conexión, con el propósito de proporcionar a los usuarios de automóvil alternativas reales para cambiarse a sistemas de transporte más eficientes desde el punto de vista social, ambiental y económico. De esta forma la estrategia urbanística y de transporte de Singapur propicia a los usuarios los incentivos para compensar las penalidades impuestas por las restricciones al uso del automóvil y como resultado, a pesar de contar con uno de los ingresos per cápita más altos de Asia, menos del 30% de sus hogares disponen de automóvil.

Al comienzo de su implantación, el sistema de permisos fue vendido a la población como un paquete integral de medidas y mejoras al sistema de transporte público, lo cual permitió al gobierno ganar el apoyo del público hacia el entonces novedoso programa. En un principio el peaje se pagaba solamente entre las 7:30 y las 9:30 (extendiéndose posteriormente hasta las 10:15 para evitar la oleada de vehículos esperando a entrar), pero a partir de 1994 se empezó a aplicar desde las 7:30 hasta las 18:30.

3.2.3.2 Resultados obtenidos

Tras la implantación de la política de transporte mencionada en el apartado anterior, la entrada de vehículos al centro de Singapur se redujo de manera drástica, con un incremento paralelo en el uso del transporte público. Entre 1975 y 1983, la entrada de personas a la zona restringida en transporte público pasó de representar el 33% a cerca del 70%. Cuando en el año 1994 el peaje se amplió a todo el día se produjo un descenso en el tráfico de entrada a la zona restringida de un 9.3%.

Con la entrada en servicio del sistema de peaje electrónico en 1998, el tráfico disminuyó en casi 25.000 vehículos durante las horas punta, mientras que las velocidades de operación aumentaron en casi un 20%. Dentro de la propia zona restringida, el volumen de tráfico se redujo en casi un 13% durante las horas de cobro de peaje, lo que representa una disminución de 270.000 a 235.000 vehículos.

38 Referencia bibliográfica 23. Página web del peaje de Singapur
39 Referencia bibliográfica 24. Wikipedia, tarifas de congestión de Singapur
También se ha observado un incremento en el número de usuarios compartiendo coche.
La intensidad de la hora punta ha disminuido gradualmente, produciéndose un ensanchamiento de las puntas, lo que significa un mejor aprovechamiento del viario.

3.2.3.3 Comentarios
El caso de Singapur es el que muestra unos efectos más palpables, quizás debido a la mayor agresividad de las medidas implantadas. La combinación de restricción del automóvil con la mejora del transporte público o multimodal (aparcamientos de conexión con el transporte colectivo) redunda en una alta transferencia de usuarios del coche al transporte colectivo. Aparte de esto, hemos podido observar cómo el paso de un sistema de peaje manual a uno puramente electrónico ha supuesto un aumento de la velocidad media de un 20%, con la lógica reducción de tiempo de viaje.
El hecho más reseñable es que la imposición de tasas (peajes, impuestos…) ha supuesto una medida de internalización de los costes externos hacia el usuario; mientras que la mejora paralela de la oferta del transporte colectivo y combinado ha implicado una reducción de esos costes externos, gracias al cambio hacia modos de transporte más sostenibles.
La combinación de ambas medidas en un mismo paquete conlleva una mejor aceptación por parte de la sociedad, lo que facilita la implantación de las medidas.
3.2.4 Ecopass, Milán\(^{40}\)\(^{41}\)

El programa Ecopass consiste en el pago de un cargo por contaminación implantado en Milán, cobrado como un peaje urbano para algunos usuarios de los vehículos que viajan dentro de las zonas de la ciudad designadas como de tráfico limitado. El Ecopass fue implantado a modo de prueba en enero de 2008 y continúa funcionando en la actualidad.

El objetivo principal del programa Ecopass es reducir la contaminación del aire originada en las emisiones de los automóviles, al tiempo que utiliza los fondos recaudados para financiar proyectos de mejora del transporte colectivo. Este esquema es similar a los programas de peajes de congestión implantados en Londres y Estocolmo, pero en realidad corresponde a una evolución de esos programas. A diferencia de las anteriores, en el Ecopass sólo pagan los vehículos que emiten más contaminación en función del estándar de emisiones del motor del vehículo.

3.2.4.1 Descripción del sistema

El precio del peaje varía entre los 2 y los 10 €, y se pagan si se accede de lunes a viernes entre las 7:30 y las 19:30. La entrada a la zona restringida es libre para varios tipos de vehículos de combustibles alternativos y para vehículos convencionales de bajas emisiones que satisfacen las normas europeas sobre emisiones Euro3 y Euro4 o superiores.

Los residentes de la zona están exonerados sólo si utilizan vehículos de bajas emisiones, mientras que los propietarios de vehículos con motores antiguos más contaminantes sólo tienen derecho a un descuento a través de la compra un pase anual que cuesta hasta 250 €.

El control del cumplimiento de la restricción es realizado con un sistema de cámaras digitales. La multa por infracción varía entre los 70 y los 275 €. El pago puede realizarse antes de entrar a la zona restringida o hasta el día siguiente. Existen pases diarios y de varios días (pase múltiple). El pago de la tarifa puede ser realizado vía internet, por teléfono, en bancos o a través de débito directo de la cuenta corriente del usuario; sin embargo, para abrir la cuenta y recibir la respectiva tarjeta Ecopass, el usuario debe realizar la gestión en los lugares designados por el ayuntamiento de Milán.

También existen restricciones para entrar en la zona para camiones de longitud mayor de 7 metros; las operaciones de carga y descarga están restringidas a horarios pre establecidos. Los vehículos con motores más antiguos que generan más emisiones no pueden acceder a la zona restringida los meses en que las condiciones meteorológicas son más desfavorables.

3.2.4.2 Comentarios

Este sistema no se centra tanto en combatir la congestión, sino en la mejora de las condiciones ambientales de la ciudad. El hecho de gravar solamente a aquellos vehículos que producen más emisiones tiene una doble finalidad: por un lado internalizar los costes externos que esas emisiones provocan en zonas urbanas, por otro el de fomentar la renovación del parque de vehículos mediante la incorporación de aquellos cuya utilización implica la generación de menores costes externos.

El hecho de que los ingresos obtenidos se dediquen a la mejora del transporte colectivo supone una manera de pagar a la sociedad por los costes externos generados, al tiempo que se fomentan los modos de transporte que menos costes externos generan.

\(^{40}\) Referencia bibliográfica 25. Página web del Ecopass de Milán

\(^{41}\) Referencia bibliográfica 26. Wikipedia, ecopass
3.2.5 Medidas de restricción del tráfico

La restricción de tráfico (o racionamiento del espacio viario) es una medida de gestión usada para establecer prohibiciones a la circulación de diversas clases de vehículos, en cierto tiempo o en cierto lugar, y es utilizada principalmente dentro de las zonas urbanas o en situaciones de emergencia. Estas restricciones son usualmente creadas con el fin de regular el uso de la red viaria, principalmente durante las horas punta en áreas urbanas, para reducir la congestión o disminuir los niveles de contaminación atmosférica producidos por los automóviles. Esta medida forma parte de las estrategias empleadas para lograr un uso más eficiente y equitativo del sistema de transporte urbano, evitando así grandes inversiones en infraestructura.

La restricción de tráfico por número de matrícula se considera una medida más equitativa que la implantación de peajes, ya que restringe en igual forma a todos los conductores independientemente de su nivel de ingresos, mientras que las tarifas de congestión son criticadas porque tienen un mayor impacto en los usuarios de menor poder adquisitivo, que en su mayoría son los que tienen que cambiar hacia el transporte público o restringir sus viajes. Sin embargo, una debilidad de la restricción de tráfico por número de matrícula es que los usuarios de mayores ingresos pueden evitar las restricciones de circulación usando o comprando un segundo vehículo.

3.2.5.1 Restricción de tráfico en São Paulo

La ciudad de São Paulo introdujo en 1997 el racionamiento de espacio viario (conocido en portugués como “rodízio veicular”), siendo ésta una de las experiencias pioneras en el mundo. La restricción de circulación se aplica a una determinada zona de la ciudad y se realiza sobre los automóviles privados. Se hace en base al último dígito del número de la matrícula y se restringen dos números por día, de lunes a viernes, en las horas punta de la mañana (de 7:00 a 10:00) y de la tarde (de 17:00 a 20:00). Actualmente el control de acceso y las multas son realizados mediante un sistema automático de detección de infracciones de tráfico.

La eficacia de este sistema es muy discutida. Desde algunos puntos de vista se entiende que contribuye a la mejora del medio ambiente y de la calidad del aire en particular. Sin embargo también existen opiniones opuestas, indicando que se puede dar un efecto contrario al deseado. Estas posturas mantienen que se incentiva la compra de más vehículos o el alargamiento de la vida útil de los más antiguos que resultan ser los más contaminantes.

Los defensores del sistema, por su parte, argumentan que este sistema fomenta una mayor ocupación de los vehículos, al tiempo que el trasvase de usuarios al transporte colectivo. Los detractores, por el contrario, ven esta medida como una solución limitada, indicando que los problemas de tráfico sólo se pueden afrontar desde una mejora del transporte público y el estímulo de los medios de transporte no contaminantes, como ya se ha realizado en otros lugares.

Este tipo de medidas no tiene como finalidad la internalización de los costes externos, ya que al usuario no se le cobra por su desplazamiento, solamente plantean la reducción de los mismos. Además el hecho de centrarse únicamente en el tráfico y no en plantear una oferta alternativa de transporte público (al contrario de lo que hemos visto en otros lugares) limita el trasvase de usuarios hacia los modos menos contaminantes.

42 Referencia bibliográfica 27. Página web del “rodízio veicular” de São Paulo
43 Referencia bibliográfica 28. Wikipedia, Rodízio de veículos de São Paulo
3.2.6 Propuesta de regulación del acceso de automóviles en Madrid

El Ayuntamiento de Madrid ha presentado un paquete de medidas para mejorar la calidad del aire en la ciudad. Las medidas incluyen el establecimiento de una Zona de Emisiones Bajas (ZEB), la integración de consideraciones ambientales en la regulación del Servicio de Estacionamiento Regulado y la incorporación de límites de emisiones en la homologación de taxis.

En la actualidad, pese a haberse reducido el tráfico privado en la ciudad en los últimos años, y a haberse ampliado la red de transporte público, el 72% de las emisiones de NO\textsubscript{2} proviene de vehículos automóviles. De ellos, el 68,7% utilizan el gasóleo como combustible y son responsables de la inmensa mayoría de este tipo de emisiones.

Esta alta proporción de vehículos de tracción diesel, ha determinado que el Ayuntamiento se proponga reducir el acceso al centro de la ciudad en vehículo privado.

En esa línea se sitúa la implantación progresiva de una Zona de Emisiones Bajas (ZEB), la cual coincide con la de mayor congestión y contaminación de la ciudad. En estas zonas se actuará conforme a los datos que se recojan en la nueva red de calidad del aire, aplicando las medidas que las circunstancias aconsejen y que podrían incluir el cierre al tráfico de vehículos privados.

En esa zona se sitúa también la mayor densidad de estaciones, tanto de Metro de Madrid como de Cercanías Renfe, con sus dos túneles cruzando de norte a sur la zona recién delimitada lo cual permite dar alternativas al uso del transporte privado.

Por otra parte, el actual Servicio de Estacionamiento Regulado (SER) en funcionamiento incorporará en su regulación criterios ambientales a añadir a los actuales de movilidad. Así, una reforma fiscal para el año 2010 establecerá que los vehículos que no sean de combustión interna quedan exentos del SER y puedan aparcar gratuitamente en toda la zona regulada.

Por último, el Ayuntamiento de Madrid incluirá entre los requisitos técnicos que deba cumplir un vehículo para poder ser homologado para su uso como taxi, límites de emisión, tanto de CO\textsubscript{2} como de Óxidos de Nitrógeno.

Como se puede observar, estas medidas no inciden en la internalización de los costes externos asociados al transporte, sino en la reducción de los mismos mediante sistemas de regulación y de incentivo de los vehículos menos contaminantes, como es el caso de la modificación de los criterios que rigen el aparcamiento en zona regulada.

44 Referencia bibliográfica 18. Revista Vía libre edición digital
3.2.7 Aparcamientos disuasorios de conexión con transporte público45 46 47

Estas infraestructuras tienen como finalidad la de permitir acceder al transporte colectivo de alta capacidad a aquellos usuarios que viven en áreas donde, por la baja densidad de población, no es factible la prestación de servicios de transporte público. Complementariamente permite el acceso a los centros urbanos de las ciudades de los usuarios del automóvil sin que éstos tengan que hacer uso del vehículo hasta el punto de destino, lo que reduce los problemas de congestión propios de los accesos a las grandes ciudades.

3.2.7.1 Descripción y experiencias

Históricamente estas infraestructuras se comenzaron a desarrollar paralelamente a los procesos de expansión urbana en los años 60 en Estados Unidos y Canadá. En estos países es habitual que las redes de cercanías y metro dispongan de este tipo de estacionamientos con centenares o miles de plazas. En Europa el proceso de desarrollo comenzó más tarde. El Reino Unido fue el primer país del Viejo Continente que contó con esta infraestructura, concretamente en Oxford a principios de los años 70.

Para que tengan éxito, estos aparcamientos deben situarse próximos a una salida de la vía de acceso a la ciudad, antes de los tramos afectados por la congestión, y junto a una parada del transporte colectivo. Éste ha de ofrecer un servicio de calidad, tanto en frecuencias como en tiempo de viaje, para que pueda competir con el automóvil en el acceso al centro urbano.

El motivo principal que lleva a los viajeros a utilizar estos aparcamientos es la falta de aparcamiento gratuito en el centro de la ciudad y a la escasez del mismo, junto con los problemas de tráfico. Por tanto esta infraestructura debe ir acompañada de otras complementarias que limiten el acceso y aparcamiento de vehículos en el lugar de destino.

En el caso de Francia, con un urbanismo más disperso que el que tenemos en nuestra geografía, en algunas líneas de cercanías la demanda proveniente de usuarios de aparcamientos disuasorios llega a ser el 5% de la demanda total. En algunas estaciones supone hasta el 30% de su demanda diaria. A esta demanda habría que añadir la modalidad de aquellos que son llevados a la estación por otro usuario de automóvil que luego marcha en el mismo vehículo.
En la imagen vemos el plano de Toulouse con la ubicación de aparcamientos junto a la red de metro. El mayor de ellos (1.000 plazas) se encuentra junto a una de las autopistas de circunvalación.

En los lugares en que se han implantado nuevos aparcamientos disuasorios, se ha observado que dos tercios de los usuarios provienen de antiguos automovilistas que realizaban el viaje completo en automóvil; el resto proviene de antiguos usuarios de transporte público u otras causas. Este aspecto ha de tenerse en consideración ya que en parte se está generando una nueva demanda en automóvil no prevista y una disminución en la demanda de ciertos servicios de transporte colectivo, lo que puede redundar en un empeoramiento del servicio.

En el caso de Estados Unidos, con un nivel de dispersión urbana más alto que el europeo, los niveles de utilización de los aparcamientos pueden llegar a ser hasta de un 50 % de la línea de transporte público en grandes ciudades. El tamaño de los aparcamientos puede superar fácilmente las 1.000 plazas. Los usuarios de este modo de trasbordo se ubican en estaciones intermedias alejadas entre 15 y 45 km del centro de la ciudad, tal y como refleja el gráfico inferior.
3.2.7.2 Comentarios

De cara a la reducción de externalidades, los aparcamientos disuasorios permiten reducir el flujo de vehículos en el centro de las ciudades y áreas urbanas consolidadas. Esto redunda en una reducción de las emisiones de los mismos precisamente en las zonas donde existe una mayor concentración de población, con lo que se logra una disminución de las afecciones por contaminación del aire. Paralelamente existe el riesgo de que se produzca un trasvase de usuarios de transporte colectivo al coche y sucesivo transbordo.

A pesar de este aspecto tan positivo hemos de considerar que la dispersión urbana es un elemento crítico para que este tipo de infraestructuras pueda tener éxito. Cuanto mayor sea la dispersión, menor es la posibilidad de satisfacer la demanda al centro de la ciudad con un sistema exclusivo de transporte colectivo, y por tanto más necesarios resultan estos aparcamientos. Al contrario, a mayor densidad mayor facilidad de establecer transporte colectivo exclusivo, al tiempo que más difícil y cara resulta la ubicación de un aparcamiento disuasorio por la falta de espacio.

Precisamente en nuestra geografía existe un urbanismo bastante compacto, lo que favorece el transporte colectivo exclusivo, sin transbordos con el automóvil. En el caso de los aparcamientos existentes en la red de Metro de Bilbao, éstos generan una demanda diaria en torno a los 1.500 viajes, lo que supone aproximadamente un 0,5% del total de viajeros del metro de Bilbao. Esta cifra resulta bastante más baja que las manejadas anteriormente debido a la mayor densidad de población y a la existencia de autobuses colectores en algunas estaciones que ofrecen un mejor servicio al usuario.
3.2.8 Gravamen sobre transporte pesado sujeto a las prestaciones (GTPP)48,49

Esta normativa es de aplicación a los camiones de más de 3,5 Tm que circulen por el territorio suizo. Consiste en la aplicación de una tasa por Tm transportada y km recorrido para aquellos vehículos que circulen por las vías de alta capacidad y carreteras del país alpino, de forma proporcional al nivel de contaminación de los motores del camión.

Fue implantada en el año 2001 con un triple objetivo:

- La aplicación del principio “el que contamina paga”
- El trasvase de mercancías de la carretera al ferrocarril
- La protección del medio ambiente

La determinación de las tasas a aplicar a los vehículos se realiza en función de los costes externos que ha de cubrir el transporte, los cuales han sido calculados. Posteriormente estos costes se relacionan con la capacidad del volumen transportado, a fin de establecer una tasa por cada Tm-km desplazada en camión en la red viaria suiza.

El cálculo del gravamen se realiza en base a tres factores:

- La distancia recorrida
- La capacidad de peso del vehículo
- La categoría de emisiones del vehículo

De esta manera se garantiza que el gravamen aplicado está en relación directa con los costes externos generados por la circulación del vehículo.

Los ingresos generados con estas imposiciones se dividen por administraciones, federal y cantonal, en la proporción de 2 a 1. Los ingresos percibidos son destinados parcialmente a la financiación de proyectos ferroviarios.

Después de siete años de aplicación se realizó un balance de los resultados alcanzados. Éstos son los siguientes:

- Se han producido ganancias en la eficiencia del sector del transporte. Concretamente el número de camiones se redujo en un 6,4% mientras que las mercancías transportadas aumentaron en un 16,4%.
- El impacto sobre los precios ha sido despreciable. La repercusión en el IPC ha sido de sólo una décima porcentual.
- Se ha producido una rápida renovación de las flotas por vehículos con motores más limpios.
- Ha habido una clara reducción de la contaminación atmosférica, estimada en el 14% en el caso de las emisiones de óxidos de nitrógeno y del 10% en el caso de partículas. Las emisiones de gases de efecto invernadero disminuyeron en un 6% en términos de toneladas equivalentes de CO\textsubscript{2}.

48 Referencia bibliográfica 29. Página web de la Fundación Movilidad

49 Referencia bibliográfica 30. Página web de la Conferencia internacional sobre la reducción, en el marco de las políticas europeas de transporte, de los inconvenientes del tráfico pesado en las rutas pirenaicas
No se ha detectado ningún efecto negativo sobre el mercado laboral, ya que el número de trabajadores empleados en el sector del transporte de mercancías por carretera ha permanecido estable.

En cambio, no se ha observado una transferencia significativa de carga hacia los modos sostenibles, el ferrocarril y el transporte fluvial. Se estima que estos sectores tienen que mejorar todavía más sus ofertas para que una parte de los cargadores decidan utilizarlos con más frecuencia.

Con todo, hay que decir que Suiza tiene la tasa de transporte de mercancías por ferrocarril más alta de Europa: medida en Tm-km es del 40%, que equivale a una carga transportada de 9,300 millones de Tm-km.

Estos resultados hay que observarlos teniendo en cuenta cuáles son las distancias más eficaces de cada modo de transporte. En el caso del ferrocarril estaríamos hablando de más de 400 Km, sin embargo Suiza es un país que, en su eje norte sur, ronda los 200 Km. Este hecho, añadido al necesario trasvase de la carga entre modos, disuade la trasferencia de la carretera al ferrocarril.

El sistema denominado “Ferroutage” -consiste en que el camión o sólo el remolque se montan íntegramente en el vagón de tren- ha venido a disminuir los costes de trasbordo entre modos. Si a esto le añadimos la extensión por el territorio de la UE de la llamada Euroviñeta, podemos considerar que el tiempo juega a favor de ese trasvase de la carretera al ferrocarril.
3.3 CONCLUSIONES

En los apartados anteriores hemos desarrollado la legislación y actuaciones destinadas a la reducción e internalización de las externalidades asociadas a la actividad del transporte. Hemos podido distinguir entre dos grandes grupos: por una parte aquellas que afectan a las áreas urbanas y por otra las que se enfocan al tráfico en todos los ámbitos geográficos.

Entre las primeras distinguimos aquellas que imputan una tasa por el acceso de los vehículos a zonas urbanas consolidadas, al menos en su parte céntrica, con el fin de reducir los problemas de congestión. Esta medida tiene un primer efecto que es la imputación de un coste a los usuarios del automóvil, con lo que se consigue internalizar en todo o en parte (dependiendo del nivel de la tasa) las externalidades provocadas por ellos mismos referidas sobre todo a congestión, contaminación atmosférica y ruido. Éstas son las que más peso tienen en las zonas urbanas. Por otra parte, la aplicación de las tasas induce una reducción del acceso de los vehículos a la zona en la que se aplica, siempre que se acompañe de una mayor dotación de transporte colectivo, con lo que también se reducen las externalidades provocadas por el transporte.

La aplicación de tasas por acceso ha resultado factible en los grandes núcleos urbanos, tal y como hemos visto en las experiencias desarrolladas. Para no penalizar el acceso de personas a las zonas en las que se aplique, la medida debería ir acompañada de una mejora del transporte colectivo a fin de dar más capacidad y accesibilidad a este modo. Asimismo habría que considerar el coste por el desarrollo de este sistema de gestión que, como hemos visto, supone un volumen económico importante. Como medida paralela se podría considerar la gestión de los actuales sistemas de pago por aparcamiento en el viario.

En cuanto a las medidas de restricción de tráfico, tendríamos dos modalidades. La que prohíbe la circulación de vehículos por número de matrícula presenta el problema de la complejidad que supone para el usuario variar la rutina de viaje dependiendo del día de la semana, aparte de que puede incentivar la adquisición de un nuevo vehículo para burlar las restricciones. Más factible resulta la restricción de la circulación, tal y como se indica en el ejemplo de las medidas que propone el ayuntamiento de Madrid. La aplicación de dichas restricciones dependiendo de las condiciones del tráfico y de los niveles de contaminación, o de forma permanente, permite la reducción de las externalidades en el ámbito en que se produzca esta restricción. Sin embargo sólo sería factible en aquellas zonas en las que se disponga de oferta de transporte público suficientemente alta como para suponer una alternativa al uso del automóvil. En general, la implantación de este tipo de medidas resulta más recomendable en aquellas zonas urbanas por las que discurren corredores de transporte colectivo con altas frecuencias y capacidad.

La creación de aparcamientos disuasorios con conexión al transporte colectivo tiene como finalidad la de ofrecer un servicio de transporte público en aquellas zonas en las que, por los altos niveles de dispersión, no es posible hacer llegar el mismo a todos los puntos de residencia. En el caso del País Vasco, encontramos zonas de diferentes niveles de dispersión, por lo que el éxito de estas medidas puede resultar dispar, además de que se deben de considerar otros factores para que este tipo de medidas resulten adecuadas en cada caso. En el caso del área metropolitana de Bilbao existen algunos ejemplos en el entorno del metro que, si bien podemos constatar que localmente tienen éxito, en el cómputo global de la movilidad distan bastante de la importancia que adquieren infraestructuras similares en países como Francia y, sobre todo, Estados Unidos, con un urbanismo más disperso. Como alternativa se puede plantear el establecimiento de servicios de transporte público colectores...
de las líneas de alta capacidad, a modo de lanzaderas, las cuales ya existen en algunas estaciones de la red del ferrocarril metropolitano de Bilbao.

En cuanto a las medidas enfocadas al tráfico en general, destacan las que resultan de la aplicación de las normativas mencionadas en la primera parte de este capítulo. Algunas de ellas se han puesto en marcha, como es la discriminación impositiva a los vehículos según su nivel de emisiones. En el caso del país Vasco podría considerarse la aplicación de la Euroviñeta, con políticas inspiradas en las llevadas a cabo en Suiza, dada la existencia de vías de peaje y alta capacidad en la CAPV, de las cuales algunas atraviesan zonas de montaña. La existencia de fuertes flujos de vehículos pesados que se dirigen a y desde la frontera al resto de la geografía peninsular podría inducir un impacto apreciable en caso de implantar aquellas políticas que figuran en la Euroviñeta –aplicación de tasas y peajes en las vías que forman parte de la red transeuropea de carreteras–.
Documento II. Reestructuración y actualización de los costes externos
1 **INTRODUCCIÓN**

El presente documento pretende aproximarnos al conocimiento de cuál ha sido la evolución de los costes externos en la CAPV tomando como referencia el anterior estudio que sirve de base para este trabajo: Costes Externos del Transporte en el País Vasco sobre la situación en el año 2004 (Referencia bibliográfica 1).

En este caso observaremos la situación en el año 2008 actualizando los valores que se dieron para 2004. Para conseguir una adecuada comparación entre ambos escenarios temporales, se ha mantenido el año 2004 como referencia de los precios de coste de los diversos conceptos de externalidades. Al final del informe actualizaremos esos valores a precios de 2008. Para ello emplearemos la herramienta que ofrece el Instituto Nacional de Estadística (INE) en su página web que permite la actualización de rentas entre diferentes fechas. Esta actualización de costes se ha realizado en base a los mismos indicadores que para el año 2004, ya que, como se comenta en la primera fase de este estudio, en el periodo 2004 - 2008 no han surgido nuevos indicadores de interés para incluir en el cálculo de las externalidades del transporte.

La actualización de los costes se ha realizado en base a la evolución que han experimentado los registros que figuran a continuación:

- **Datos de siniestralidad** (Fuente: Departamento de Interior del Gobierno Vasco).
- **Datos de evolución del tráfico** (Fuentes: aforos de las redes de carreteras de las tres Diputaciones Forales; documento de panorámica de las mercancías en el País Vasco 2008. Portal OTEUS del Gobierno Vasco. Modelo de transporte de elaboración propia)
- **Datos de evolución del transporte público** (Fuentes: Consorcio de Transporte de Bizkaia. Memorias de actividad de RENFE. Memorias de actividad de Euskotren. Panorámica del transporte en Euskadi 2008)
- **Datos de factores de emisión de los vehículos automóviles** (Fuentes: Portal de la Unión Europea. Wikipedia)
- **Parque de vehículos: volumen, tipo y antigüedad** (Fuente: Dirección General de Tráfico)
- **Evolución de la red de carreteras del País Vasco** (Fuente: mapas de carreteras)
- **Estructura de la producción de energía eléctrica en España** (Fuente: Red Eléctrica Española)

El procedimiento general que se ha seguido para la actualización de los costes externos ha sido el de aplicar a los mismos la variación que ha habido entre 2004 y 2008 de los factores que los condicionan. En algunos casos la actualización se ha realizado aplicando directamente el mismo procedimiento de cálculo que para los costes de 2004. Esto ha sido así por dos motivos:

- Según lo visto en el documento I de este volumen, las metodologías actuales no difieren apreciablemente de las empleadas en el estudio de referencia
- Permite una comparativa más transparente entre los dos años mencionados
Las ideas principales que podemos extraer de los resultados obtenidos son:

1. La fuerte reducción de los costes por siniestralidad, en paralelo a la mejora de la seguridad vial que se ha producido en los últimos años. Según el propio Departamento de Interior del Gobierno Vasco esto ha sido posible gracias a tres factores principales: una buena red de carreteras en mejora constante, un parque móvil más seguro y con un nivel de servicio garantizado por las inspecciones técnicas obligatorias, y un trabajo institucional de organismos públicos y privados. Este último se ha enfocado en el Plan Estratégico de Seguridad Vial de Euskadi, que liderado por el Departamento de Interior del Gobierno Vasco, ha generado una nueva cultura en torno a la circulación. También han contribuido a esta mejora medidas administrativas por todos conocidas -carné por puntos y reforma del código penal-.

2. Destaca también la reducción de los costes de contaminación del aire pese al aumento del tráfico urbano. Esto se debe a la renovación del parque de vehículos y a las mayores exigencias ambientales que se han venido implantando en los vehículos de nueva matriculación desde la década de los noventa.

3. Sobre el resto de indicadores, mencionamos el incremento en los costes de congestión. Este aumento se ha debido al incremento de tráfico que se produjo en el periodo 2004-2008 sin que aún hubieran entrado en servicio varias obras de infraestructura, ya previstas, destinadas a reducir dicha congestión. Podemos adelantar de todas maneras que en aquellos casos en que sí había entrado en servicio la mejora de capacidad de la red vial, si se ha producido un descenso de los factores que afectan a la congestión, como podemos ver en el apartado correspondiente, particularmente en el caso de la Bi-604 (carretera de Enekuri).

Pasando ya a la estructura del documento, en primer lugar vamos a mostrar los resultados globales obtenidos para el año 2008 y los que se obtuvieron en el año 2004 según el estudio de referencia, así como un gráfico con las diferencias entre los mismos. Estos datos están referenciados a precios de 2004 para poder establecer una comparativa entre el comienzo y el final del periodo de análisis. En el caso del año 2008 no se ha incluido la valoración de los costes por cambio climático a corto plazo sin mecanismos flexibles ya que, según la metodología estudiada en el documento I, este aspecto ya no se considera en la valoración de los costes externos.

Posteriormente mostraremos la metodología y datos empleados para la obtención de los datos que han servido de base para la estimación de los costes externos. Estos costes externos se desarrollan posteriormente en detalle, con un apartado específico por cada concepto, referenciados asimismo a precios de 2004, ya que los comparamos con los costes obtenidos para dicho año.

Finalmente se muestran los resultados globales obtenidos y su comparativa con los del año 2004. Incluimos además reflexiones sobre las causas que han llevado a la variación de los costes. Como colofón mostramos los costes del año 2008 referidos a precios de 2008, en este caso los costes se ven incrementados por el efecto de la inflación -aumento del 12,6% en el periodo de análisis 2004-2008 según información del Instituto Nacional de Estadística (INE)-.
2 Resultados globales

Año 2008. TOTAL: 1.700 millones de € (corto plazo) a precios de 2004

<table>
<thead>
<tr>
<th>AÑO 2008</th>
<th>en Mil. EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrocarril</td>
<td>Carretera</td>
</tr>
<tr>
<td>Corto plazo</td>
<td>62</td>
</tr>
<tr>
<td>Largo plazo</td>
<td>166</td>
</tr>
<tr>
<td>Costes por accidentes</td>
<td>535</td>
</tr>
<tr>
<td>Costes por ruido</td>
<td>479</td>
</tr>
<tr>
<td>Costes por contaminación del aire</td>
<td>159</td>
</tr>
<tr>
<td>Costes de naturaleza y paisaje</td>
<td>91</td>
</tr>
<tr>
<td>Costes en áreas urbanas</td>
<td>66</td>
</tr>
<tr>
<td>Corto plazo</td>
<td>28</td>
</tr>
<tr>
<td>Largo plazo</td>
<td>75</td>
</tr>
<tr>
<td>Costes de congestión</td>
<td>281</td>
</tr>
</tbody>
</table>

No se realiza la valoración de los costes externos por cambio climático a corto plazo sin mecanismos flexibles ya que no se incluye en la metodología actual.

Para los costes por cambio climático y costes por efectos indirectos, el supuesto adoptado es el denominado de “corto plazo”, acorde al sistema europeo de comercio de emisiones. Ver explicación en los apartados 2.2.5 y 2.2.8 del Documento I. Con el supuesto de “largo plazo” el coste total se incrementa en 151 millones de euros con respecto al de “corto plazo”.

Con el supuesto de “largo plazo” el coste total se incrementa en 151 millones de euros con respecto al de “corto plazo”.

<table>
<thead>
<tr>
<th>Costes por cambio climático</th>
<th>Costes ambientales</th>
<th>Costes por efectos indirectos</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>535</td>
<td>479</td>
</tr>
<tr>
<td>166</td>
<td>159</td>
<td>281</td>
</tr>
<tr>
<td>159</td>
<td>91</td>
<td>66</td>
</tr>
<tr>
<td>479</td>
<td>28</td>
<td>75</td>
</tr>
<tr>
<td>281</td>
<td>28</td>
<td>75</td>
</tr>
</tbody>
</table>
Año 2004. TOTAL: 1.952 millones de € (corto plazo) a precios de 2004

En este estudio para los costes por cambio climático y costes por efectos indirectos, el supuesto adoptado fue el denominado de “corto plazo”, acorde al sistema europeo de comercio de emisiones.
Diferencias entre 2008 y 2004: descenso de 252 millones de euros (Corto plazo) a precios de 2004

Diferencias 2008 - 2004

No se realiza la valoración de los costes externos por cambio climático a corto plazo sin mecanismos flexibles ya que no se incluye en la metodología actual.

Para los costes por cambio climático y costes por efectos indirectos, el supuesto adoptado es el denominado de “corto plazo”, acorde al sistema europeo de comercio de emisiones. Ver explicación en los apartados 2.2.5 y 2.2.8 del Documento I.
3 PROCESO DE OBTENCIÓN DE DATOS

En este capítulo desarrollamos los diversos procesos que hemos llevado a cabo para la obtención de los datos necesarios en la estimación de los costes externos de 2008.

Los datos que se han necesitado son los que se mencionan en la introducción de este informe y, en síntesis, son los siguientes: siniestralidad, intensidad de tráfico, oferta y demanda de transporte público, factores de emisión de los vehículos, parque de vehículos, infraestructura de transporte y modelo de transporte de elaboración propia.

3.1 DATOS DE SINESTRALIDAD

Estos datos han sido empleados para la estimación de los costes externos por accidentes.

Los resultados de la siniestralidad del año 2008, según datos del Departamento de Interior del Gobierno Vasco, son los que se reflejan en las tablas siguientes; la primera referida a los accidentes en vías interurbanas y vías de alta capacidad, la segunda referida a los accidentes en vías urbanas.

<table>
<thead>
<tr>
<th>CAPV</th>
<th>P. MUERTAS</th>
<th>H. GRAVES</th>
<th>H. LEVES</th>
<th>P. ILEASAS</th>
<th>TOTAL PERSONAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº</td>
<td>%</td>
<td>Nº</td>
<td>%</td>
<td>Nº</td>
</tr>
<tr>
<td>Vehículos de dos ruedas</td>
<td>16</td>
<td>21,1</td>
<td>126</td>
<td>29,6</td>
<td>495</td>
</tr>
<tr>
<td>Vehículos ligeros</td>
<td>41</td>
<td>53,9</td>
<td>228</td>
<td>30,6</td>
<td>3,165</td>
</tr>
<tr>
<td>Vehículos pesados</td>
<td>5</td>
<td>6,6</td>
<td>23</td>
<td>5,4</td>
<td>154</td>
</tr>
<tr>
<td>Peatones</td>
<td>12</td>
<td>15,8</td>
<td>44</td>
<td>10,4</td>
<td>196</td>
</tr>
<tr>
<td>Otros vehículos</td>
<td>2</td>
<td>2,6</td>
<td>4</td>
<td>0,9</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>76</td>
<td>100</td>
<td>425</td>
<td>100</td>
<td>3,935</td>
</tr>
</tbody>
</table>

A continuación reproducimos los resultados para vías urbanas.

<table>
<thead>
<tr>
<th></th>
<th>P. MUERTAS</th>
<th>H. GRAVES</th>
<th>H. LEVES</th>
<th>P. ILEASAS</th>
<th>TOTAL PERSONAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº</td>
<td>%</td>
<td>Nº</td>
<td>%</td>
<td>Nº</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8</td>
<td>100</td>
<td>217</td>
<td>100</td>
<td>2,514</td>
</tr>
</tbody>
</table>

Para poder imputar a cada tipo de vehículo las cifras de siniestralidad, se ha procedido de la misma forma que en el estudio de referencia, es decir, se ha realizado un reparto de la siniestralidad proporcional a los volúmenes de tráfico de cada tipo de vehículo. Estos volúmenes se definen más adelante.

51 Referencia bibliográfica 1. Costes Externos del Transporte en el País Vasco
3.2 EVOLUCIÓN DE TRÁFICO

Hemos determinado de forma general la evolución del tráfico en las carreteras del País Vasco en función de los datos publicados por los organismos responsables de cada una de las diputaciones. Estos resultados han sido agregados posteriormente a fin de mostrar la evolución global del tráfico en la CAPV. Son utilizados para la estimación de todas las categorías de coste. A continuación mostramos los resultados obtenidos en cada uno de los territorios a partir de las fuentes consultadas.

3.2.1 Evolución del tráfico en las carreteras de Álava

Para determinar cuál ha sido la evolución del tráfico en las carreteras de Álava hemos recurrido al plano de aforos que publica la Diputación Foral de Álava52 anualmente. De esta forma hemos podido comparar los resultados del año 2008 con los de 2004, año de referencia para el anterior estudio. A continuación mostramos sobre mapa los aforos que se han seleccionado a fin de obtener la mencionada evolución.

52 Referencia bibliográfica 33. Página web del mapa de aforos de las carreteras de Álava 2008.
La explotación de los datos aportados por las estaciones de aforo analizadas la reflejamos en la tabla siguiente.

<table>
<thead>
<tr>
<th>AFORO</th>
<th>2004</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Totales</td>
<td>Ligeros</td>
</tr>
<tr>
<td>102</td>
<td>16,439</td>
<td>12,987</td>
</tr>
<tr>
<td>1070</td>
<td>14,538</td>
<td>11,776</td>
</tr>
<tr>
<td>302</td>
<td>4,618</td>
<td>3,186</td>
</tr>
<tr>
<td>840</td>
<td>35,456</td>
<td>31,556</td>
</tr>
<tr>
<td>110</td>
<td>26,769</td>
<td>23,557</td>
</tr>
<tr>
<td>50</td>
<td>36,398</td>
<td>25,479</td>
</tr>
<tr>
<td>60</td>
<td>29,716</td>
<td>20,504</td>
</tr>
<tr>
<td>70</td>
<td>24,685</td>
<td>16,045</td>
</tr>
<tr>
<td>40</td>
<td>32,383</td>
<td>21,049</td>
</tr>
<tr>
<td>240</td>
<td>38,445</td>
<td>28,449</td>
</tr>
<tr>
<td>130</td>
<td>16,954</td>
<td>16,106</td>
</tr>
<tr>
<td>593</td>
<td>10,175</td>
<td>7,733</td>
</tr>
<tr>
<td>190</td>
<td>3,545</td>
<td>3,226</td>
</tr>
<tr>
<td>230</td>
<td>24,421</td>
<td>17,095</td>
</tr>
<tr>
<td>TOTAL</td>
<td>314,542</td>
<td>238,748</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variación 2008 / 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totales: 6,8%</td>
</tr>
<tr>
<td>Ligeros: 9,2%</td>
</tr>
<tr>
<td>Pesados: -0,7%</td>
</tr>
</tbody>
</table>

Como se puede observar, se ha producido un incremento en la demanda de vehículos ligeros, mientras que los vehículos pesados han experimentado un estancamiento, básicamente por el impacto que la crisis que comenzó a finales de 2008 haya podido tener en el transporte de mercancías.

3.2.2 Evolución del tráfico en las carreteras de Bizkaia

Para determinar cuál ha sido la evolución del tráfico en las carreteras de Bizkaia hemos consultado las publicaciones de la Diputación Foral de Bizkaia (DFB) específicas sobre este tema.

El mencionado documento ofrece tanto información agregada del volumen anual de tráfico, como resultados específicos de las estaciones de aforo que conforman la red viaria vizcaína. Esto nos permite realizar una doble aproximación, la primera más general y la segunda más específica por tipo de entorno –urbano o interurbano–.
A continuación reproducimos unas capturas de este documento que refleja la evolución global del volumen de tráfico desde el año 2003. Los resultados se expresan en millones de vehículos al año (MMVeh.xKm/año).

Cuadro 2.3.2.
EVOLUCIÓN DE LA MOVILIDAD DE LA RED VIARIA FORAL DE BIZKAIA

<table>
<thead>
<tr>
<th>REDES</th>
<th>Longitud Kms</th>
<th>Movilidad (MMVeh.xKm/año) 2003</th>
<th>Movilidad (MMVeh.xKm/año) 2004</th>
<th>Movilidad (MMVeh.xKm/año) 2005</th>
<th>Movilidad (MMVeh.xKm/año) 2006</th>
<th>Movilidad (MMVeh.xKm/año) 2007</th>
<th>Movilidad (MMVeh.xKm/año) 2008</th>
<th>Incremento Tasa Anual 2007/08 (%)</th>
<th>Incremento Tasa Anual 2003/06 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERÉS PREFERENTE (ROJA)</td>
<td>239,0</td>
<td>2.525,8</td>
<td>2.649,0</td>
<td>2.712,3</td>
<td>2.830,8</td>
<td>2.889,0</td>
<td>2.989,0</td>
<td>-0,7</td>
<td>2,6</td>
</tr>
<tr>
<td>BÁSICA (NARANJA)</td>
<td>211,8</td>
<td>1.103,2</td>
<td>1.136,6</td>
<td>1.190,1</td>
<td>1.210,4</td>
<td>1.240,9</td>
<td>1.257,1</td>
<td>1,0</td>
<td>2,6</td>
</tr>
<tr>
<td>COMPLEMENTARIA (AZUL)</td>
<td>34,3</td>
<td>199,6</td>
<td>191,5</td>
<td>186,2</td>
<td>187,2</td>
<td>190,9</td>
<td>188,9</td>
<td>-1,1</td>
<td>-1,1</td>
</tr>
<tr>
<td>COMARCAL (VERDE)</td>
<td>209,4</td>
<td>294,4</td>
<td>291,9</td>
<td>293,2</td>
<td>296,0</td>
<td>297,4</td>
<td>297,8</td>
<td>0,1</td>
<td>0,9</td>
</tr>
<tr>
<td>LOCAL (AMARILLA)</td>
<td>637,9</td>
<td>363,0</td>
<td>360,0</td>
<td>364,4</td>
<td>366,5</td>
<td>392,2</td>
<td>372,8</td>
<td>-5,6</td>
<td>0,5</td>
</tr>
<tr>
<td>TOTAL RED BIZKAIA</td>
<td>1.332,5</td>
<td>4.476,1</td>
<td>4.644,6</td>
<td>4.795,0</td>
<td>4.897,7</td>
<td>5.022,2</td>
<td>4.984,7</td>
<td>-0,7</td>
<td>2,2</td>
</tr>
</tbody>
</table>

En las siguientes tablas observamos los datos de movilidad de vehículos pesados, primero en el año 2008 y después en el 2004, en Bizkaia. Constatamos que se ha producido un estancamiento, con un leve descenso en 2008 respecto al año de referencia, en contraste con lo mostrado para el volumen global de vehículos – este hecho tiene relación con la crisis que comenzó a manifestarse a mediados de 2008 -. Esto nos revela que el crecimiento de tráfico se ha debido principalmente al aumento de vehículos ligeros.

Cuadro 2.2.2.2.
DISTRIBUCIÓN DE LA MOVILIDAD DE VEHÍCULOS PESADOS

<table>
<thead>
<tr>
<th>REDES</th>
<th>Largo RED Kms</th>
<th>Nº Veh. Pesados Día Medio</th>
<th>Nº Veh. Pesados Día Laboral</th>
<th>Movilidad Pesados n° veh. x Kms/año</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERÉS PREFERENTE (ROJA)</td>
<td>235,0</td>
<td>17,9</td>
<td>5,694</td>
<td>4,606</td>
<td>322,2</td>
</tr>
<tr>
<td>BÁSICA (NARANJA)</td>
<td>211,8</td>
<td>15,9</td>
<td>1,112</td>
<td>1,445</td>
<td>86,0</td>
</tr>
<tr>
<td>COMPLEMENTARIA (AZUL)</td>
<td>34,3</td>
<td>2,6</td>
<td>1,221</td>
<td>1,628</td>
<td>15,3</td>
</tr>
<tr>
<td>COMARCAL (VERDE)</td>
<td>200,4</td>
<td>15,7</td>
<td>241</td>
<td>305</td>
<td>19,4</td>
</tr>
<tr>
<td>LOCAL (AMARILLA)</td>
<td>637,9</td>
<td>47,9</td>
<td>90</td>
<td>118</td>
<td>21,1</td>
</tr>
<tr>
<td>TOTAL RED BIZKAIA</td>
<td>1.332,5</td>
<td>100,0</td>
<td>952</td>
<td>1.238</td>
<td>463,0</td>
</tr>
</tbody>
</table>

Cuadro 2.2.2.2. Distribución de la Movilidad de Vehículos Pesados

<table>
<thead>
<tr>
<th>REDES</th>
<th>Largo RED Kms</th>
<th>Nº Veh. Pesados Día Medio</th>
<th>Nº Veh. Pesados Día Laboral</th>
<th>Movilidad Pesados n° veh. x Kms/año</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERÉS PREFERENTE (ROJA)</td>
<td>240,9</td>
<td>17,3</td>
<td>3,581</td>
<td>4,543</td>
<td>314,0</td>
</tr>
<tr>
<td>BÁSICA (NARANJA)</td>
<td>211,3</td>
<td>15,2</td>
<td>1,074</td>
<td>1,385</td>
<td>82,0</td>
</tr>
<tr>
<td>COMPLEMENTARIA (AZUL)</td>
<td>30,7</td>
<td>2,6</td>
<td>1,536</td>
<td>1,050</td>
<td>10,3</td>
</tr>
<tr>
<td>COMARCAL (VERDE)</td>
<td>217,7</td>
<td>15,6</td>
<td>229</td>
<td>205</td>
<td>10,2</td>
</tr>
<tr>
<td>LOCAL (AMARILLA)</td>
<td>670,0</td>
<td>40,7</td>
<td>104</td>
<td>135</td>
<td>25,8</td>
</tr>
<tr>
<td>SIN CLASIFICAR (SIC)</td>
<td>5,0</td>
<td>0,4</td>
<td>1,824</td>
<td>1,813</td>
<td>3,3</td>
</tr>
<tr>
<td>TOTAL RED BIZKAIA</td>
<td>1.392,5</td>
<td>100,0</td>
<td>914</td>
<td>1.161</td>
<td>464,3</td>
</tr>
</tbody>
</table>

Por tanto el incremento de tráfico en las vías interurbanas de Bizkaia ha sido de 4.984,7 frente a 4.644,6 = +7,3%. Si desglosamos los resultados entre ligeros y pesados la variación ha sido la siguiente:

Variación de ligeros 2008/2004: 4.521,7 frente a 4.180,3 = +8,2%

Variación de pesados 2008/2004: 463,0 frente a 464,3 = -0,3%

3.2.3 Evolución del tráfico en las carreteras de Gipuzkoa

Para determinar cuál ha sido la evolución del tráfico en las carreteras de Gipuzkoa hemos consultado la publicación específica de la Diputación Foral de Gipuzkoa (DFG) sobre este tema. Los resultados en vehículos-km/año se reflejan a continuación.

<table>
<thead>
<tr>
<th>RED</th>
<th>Totales</th>
<th>Ligeros</th>
<th>Pesados</th>
<th>Totales</th>
<th>Ligeros</th>
<th>Pesados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferente</td>
<td>2.305.575.000</td>
<td>1.814.086.000</td>
<td>491.489.000</td>
<td>2.439.064.000</td>
<td>1.925.962.000</td>
<td>513.102.000</td>
</tr>
<tr>
<td>Básica</td>
<td>479.949.000</td>
<td>383.959.000</td>
<td>95.990.000</td>
<td>482.081.000</td>
<td>395.306.000</td>
<td>86.775.000</td>
</tr>
<tr>
<td>Comarcal</td>
<td>334.862.000</td>
<td>298.027.000</td>
<td>36.835.000</td>
<td>382.840.000</td>
<td>336.899.000</td>
<td>45.941.000</td>
</tr>
<tr>
<td>Local</td>
<td>96.719.000</td>
<td>86.080.000</td>
<td>10.639.000</td>
<td>94.982.000</td>
<td>83.584.000</td>
<td>11.398.000</td>
</tr>
<tr>
<td>Gris Principal</td>
<td>69.363.000</td>
<td>69.363.000</td>
<td>-</td>
<td>67.141.000</td>
<td>67.141.000</td>
<td>-</td>
</tr>
<tr>
<td>Gris Secundaria</td>
<td>3.286.000</td>
<td>3.286.000</td>
<td>-</td>
<td>3.836.000</td>
<td>3.836.000</td>
<td>-</td>
</tr>
</tbody>
</table>

3.2.4 Evolución global del tráfico en las carreteras del País Vasco

Una vez vistos los resultados de la evolución del tráfico en cada uno de los territorios, pasamos a hacer el cómputo global para todo el País Vasco apoyándonos en el estudio referido al año 2004. Estos datos son los que se reproducen a continuación. Debajo mostramos el resultado de aplicar la evolución que hemos visto en los anteriores apartados y su comparativa porcentual con los datos de 2004.

Reparto en millones de vehículos-km. Año 2004

<table>
<thead>
<tr>
<th>RED</th>
<th>Furgonetas</th>
<th>Motos</th>
<th>Turismos</th>
<th>Camiones</th>
<th>Autobuses</th>
<th>Ligeros</th>
<th>Pesados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bizkaia</td>
<td>710</td>
<td>26</td>
<td>3.987</td>
<td>414</td>
<td>50</td>
<td>4.723</td>
<td>464</td>
</tr>
<tr>
<td>Gipuzkoa</td>
<td>451</td>
<td>17</td>
<td>2.532</td>
<td>602</td>
<td>32</td>
<td>3.000</td>
<td>634</td>
</tr>
<tr>
<td>Álava</td>
<td>169</td>
<td>6</td>
<td>951</td>
<td>297</td>
<td>12</td>
<td>1.126</td>
<td>309</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.330</td>
<td>49</td>
<td>7.470</td>
<td>1.314</td>
<td>93</td>
<td>8.849</td>
<td>1.407</td>
</tr>
</tbody>
</table>

Reparto en millones de vehículos-km. Año 2008

<table>
<thead>
<tr>
<th>RED</th>
<th>Furgonetas</th>
<th>Motos</th>
<th>Turismos</th>
<th>Camiones</th>
<th>Autobuses</th>
<th>Ligeros</th>
<th>Pesados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bizkaia</td>
<td>768</td>
<td>28</td>
<td>4.314</td>
<td>411</td>
<td>52</td>
<td>5.110</td>
<td>464</td>
</tr>
<tr>
<td>Gipuzkoa</td>
<td>478</td>
<td>18</td>
<td>2.682</td>
<td>623</td>
<td>33</td>
<td>3.177</td>
<td>656</td>
</tr>
<tr>
<td>Álava</td>
<td>185</td>
<td>7</td>
<td>1.038</td>
<td>294</td>
<td>13</td>
<td>1.230</td>
<td>307</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.431</td>
<td>53</td>
<td>8.034</td>
<td>1.328</td>
<td>98</td>
<td>9.517</td>
<td>1.426</td>
</tr>
</tbody>
</table>

Diferencia porcentual respecto a 2004

<table>
<thead>
<tr>
<th>Diferencia</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,6%</td>
<td>8,2%</td>
<td>7,6%</td>
<td>1,1%</td>
<td>5,4%</td>
<td>7,5%</td>
<td>1,4%</td>
</tr>
</tbody>
</table>

55 Referencia bibliográfica 36. Información de aforos en las carreteras de Gipuzkoa, recopilación hasta el año 2008
Las diferencias entre las intensidades observadas en los libros de aforos y las reflejadas en las tablas anteriores se deben a que, en las primeras, sólo se contabilizan las carreteras de cada diputación, mientras que en las tablas finales se refieren al total de carreteras, incluyendo las de ámbito municipal.

Como se puede observar, se ha producido un incremento general del tráfico en nuestra comunidad autónoma en el periodo comprendido entre 2004 y 2008. Este incremento, sin embargo, no llega a superar en ninguno de los tipos de vehículos el 10%, correspondiendo al conjunto de ligeros un aumento de algo más del 7% y a los pesados poco más del 1%.

Para contrastar estos resultados hemos recurrido al informe de panorámica del transporte de Euskadi, referencia bibliográfica 37, en el que se cifra la variación del volumen de mercancías por carretera entre los años 2005 y 2008 en un incremento del 1,5%, el cual, pese a referirse a un periodo un año inferior al que estamos manejando, da una idea del orden de magnitud de variación en que nos movemos.

3.3 Parque de vehículos\[56][57][58]

Tanto el volumen, como el parque de vehículos del País Vasco se han obtenido por medio de la consulta de los datos estadísticos de la Dirección general de Tráfico (DGT). Los primeros se han extraído directamente de la fuente citada, tal y como se reproduce en las siguientes tablas capturadas de la página web de dicho organismo. Éstos han sido empleados para la estimación de los costes por contaminación del aire.

<table>
<thead>
<tr>
<th>PROVINCIAS</th>
<th>CAMIONES Y FURGONETAS</th>
<th>AUTOBUSES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GASOLINA</td>
<td>GAS - OIL</td>
</tr>
<tr>
<td>Álava</td>
<td>3.169</td>
<td>29.413</td>
</tr>
<tr>
<td>Guipúzcoa</td>
<td>7.258</td>
<td>63.839</td>
</tr>
<tr>
<td>Vizcaya</td>
<td>9.488</td>
<td>81.064</td>
</tr>
<tr>
<td>Total</td>
<td>19.915</td>
<td>174.316</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROVINCIAS</th>
<th>TURISMO</th>
<th>MOTOCICLETAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GASOLINA</td>
<td>GAS - OIL</td>
</tr>
<tr>
<td>Álava</td>
<td>75.422</td>
<td>68.941</td>
</tr>
<tr>
<td>Guipúzcoa</td>
<td>148.713</td>
<td>152.915</td>
</tr>
<tr>
<td>Vizcaya</td>
<td>239.251</td>
<td>251.557</td>
</tr>
<tr>
<td>Total</td>
<td>463.386</td>
<td>473.413</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROVINCIAS</th>
<th>TRACTORES INDUSTRIALES</th>
<th>OTROS VEHICULOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GASOLINA</td>
<td>GAS - OIL</td>
</tr>
<tr>
<td>Álava</td>
<td>11</td>
<td>1.436</td>
</tr>
<tr>
<td>Vizcaya</td>
<td>32</td>
<td>4.103</td>
</tr>
</tbody>
</table>

\[56\] Referencia bibliográfica 38. Anuario estadístico general año 2008 Dirección General de Tráfico
\[57\] Referencia bibliográfica 39. Página web de la DGT, sección de estadísticas
\[58\] Referencia bibliográfica 40. Página web del portal de la Unión Europea sobre normativa de emisiones
Para la obtención de la antigüedad del parque de vehículos, hemos tenido que apoyarnos en los datos de matriculación de cada tipo de vehículo según el combustible empleado referidos a toda España, ya que no ha sido posible la obtención de este tipo de datos en el ámbito del País Vasco. Este procedimiento es el mismo que se llevó a cabo en el estudio de referencia para la obtención de los costes externos del año 2004.

Los datos de antigüedad del parque de vehículos nos ayudan en la obtención de las ratios de emisiones de los vehículos, ya que asociamos el año de matriculación con la normativa de emisiones existente en el momento en que se produjo dicha matriculación.

A continuación mostramos los datos brutos empleados en el proceso y los resultados obtenidos tras él.

Las siguientes tablas muestran la antigüedad del parque nacional a 31 de diciembre de 2008.

<table>
<thead>
<tr>
<th>Año de Matriculación</th>
<th>Camiones y Furgonetas</th>
<th>Autobuses</th>
<th>Turismos</th>
<th>Motocicletas</th>
<th>Tractores Industriales</th>
<th>Otros Vehículos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antes de 1989</td>
<td>663,508</td>
<td>8,475</td>
<td>2,607,557</td>
<td>559,533</td>
<td>13,311</td>
<td>86,976</td>
</tr>
<tr>
<td>1989</td>
<td>120,017</td>
<td>900</td>
<td>330,106</td>
<td>71,399</td>
<td>2,693</td>
<td>17,613</td>
</tr>
<tr>
<td>1990</td>
<td>127,644</td>
<td>944</td>
<td>337,406</td>
<td>82,453</td>
<td>2,436</td>
<td>15,878</td>
</tr>
<tr>
<td>1991</td>
<td>130,099</td>
<td>1,241</td>
<td>369,133</td>
<td>86,162</td>
<td>2,033</td>
<td>17,042</td>
</tr>
<tr>
<td>1992</td>
<td>146,301</td>
<td>1,589</td>
<td>489,580</td>
<td>76,159</td>
<td>1,767</td>
<td>16,409</td>
</tr>
<tr>
<td>1993</td>
<td>156,753</td>
<td>1,395</td>
<td>430,968</td>
<td>38,596</td>
<td>960</td>
<td>11,346</td>
</tr>
<tr>
<td>1994</td>
<td>123,421</td>
<td>1,402</td>
<td>568,913</td>
<td>27,528</td>
<td>1,730</td>
<td>13,892</td>
</tr>
<tr>
<td>1995</td>
<td>123,421</td>
<td>2,049</td>
<td>548,706</td>
<td>25,524</td>
<td>3,702</td>
<td>17,497</td>
</tr>
<tr>
<td>1996</td>
<td>154,945</td>
<td>2,411</td>
<td>665,486</td>
<td>24,416</td>
<td>4,004</td>
<td>17,798</td>
</tr>
<tr>
<td>1997</td>
<td>195,463</td>
<td>2,816</td>
<td>856,909</td>
<td>35,290</td>
<td>6,292</td>
<td>22,687</td>
</tr>
<tr>
<td>1998</td>
<td>231,332</td>
<td>3,238</td>
<td>1,077,261</td>
<td>48,439</td>
<td>8,406</td>
<td>25,736</td>
</tr>
<tr>
<td>1999</td>
<td>279,179</td>
<td>3,657</td>
<td>1,308,115</td>
<td>60,935</td>
<td>11,605</td>
<td>36,502</td>
</tr>
<tr>
<td>2000</td>
<td>274,384</td>
<td>3,161</td>
<td>1,291,611</td>
<td>63,165</td>
<td>13,044</td>
<td>40,758</td>
</tr>
<tr>
<td>2001</td>
<td>267,672</td>
<td>3,351</td>
<td>1,340,574</td>
<td>59,863</td>
<td>14,254</td>
<td>43,582</td>
</tr>
<tr>
<td>2002</td>
<td>253,566</td>
<td>3,013</td>
<td>1,250,079</td>
<td>59,129</td>
<td>14,147</td>
<td>47,673</td>
</tr>
<tr>
<td>2003</td>
<td>286,211</td>
<td>3,134</td>
<td>1,349,766</td>
<td>72,702</td>
<td>15,519</td>
<td>57,821</td>
</tr>
<tr>
<td>2004</td>
<td>326,300</td>
<td>3,575</td>
<td>1,511,525</td>
<td>118,237</td>
<td>17,963</td>
<td>74,575</td>
</tr>
<tr>
<td>2005</td>
<td>376,591</td>
<td>4,058</td>
<td>1,556,203</td>
<td>216,097</td>
<td>20,013</td>
<td>82,185</td>
</tr>
<tr>
<td>2006</td>
<td>385,739</td>
<td>3,791</td>
<td>1,549,556</td>
<td>270,947</td>
<td>20,549</td>
<td>82,108</td>
</tr>
<tr>
<td>2007</td>
<td>399,594</td>
<td>4,134</td>
<td>1,532,605</td>
<td>262,453</td>
<td>22,651</td>
<td>77,409</td>
</tr>
<tr>
<td>2008</td>
<td>217,804</td>
<td>3,821</td>
<td>1,153,103</td>
<td>220,792</td>
<td>16,245</td>
<td>41,973</td>
</tr>
</tbody>
</table>

Total: 5,192,219 62,186 22,145,364 2,500,819 213,366 856,260

Costes externos del transporte en la CAPV: actualización e internalización

País Vasco

<table>
<thead>
<tr>
<th>Camiones y furgonetas</th>
<th>Autobuses</th>
<th>Turismos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustible</td>
<td>Gasolina</td>
<td>Gasóleo</td>
</tr>
<tr>
<td>Total</td>
<td>19.915</td>
<td>174.316</td>
</tr>
<tr>
<td>Antes de 1989</td>
<td>7.311</td>
<td>17.510</td>
</tr>
<tr>
<td>1989</td>
<td>1.047</td>
<td>3.443</td>
</tr>
<tr>
<td>1990</td>
<td>994</td>
<td>3.781</td>
</tr>
<tr>
<td>1991</td>
<td>1.070</td>
<td>3.797</td>
</tr>
<tr>
<td>1992</td>
<td>1.183</td>
<td>4.290</td>
</tr>
<tr>
<td>1993</td>
<td>829</td>
<td>3.329</td>
</tr>
<tr>
<td>1994</td>
<td>672</td>
<td>3.945</td>
</tr>
<tr>
<td>1995</td>
<td>496</td>
<td>4.467</td>
</tr>
<tr>
<td>1996</td>
<td>445</td>
<td>5.351</td>
</tr>
<tr>
<td>1997</td>
<td>495</td>
<td>6.817</td>
</tr>
<tr>
<td>1999</td>
<td>559</td>
<td>9.884</td>
</tr>
<tr>
<td>2000</td>
<td>525</td>
<td>9.739</td>
</tr>
<tr>
<td>2001</td>
<td>584</td>
<td>9.429</td>
</tr>
<tr>
<td>2002</td>
<td>453</td>
<td>9.033</td>
</tr>
<tr>
<td>2003</td>
<td>455</td>
<td>10.326</td>
</tr>
<tr>
<td>2004</td>
<td>474</td>
<td>11.733</td>
</tr>
<tr>
<td>2005</td>
<td>555</td>
<td>13.495</td>
</tr>
<tr>
<td>2006</td>
<td>584</td>
<td>13.844</td>
</tr>
<tr>
<td>2007</td>
<td>496</td>
<td>14.071</td>
</tr>
<tr>
<td>2008</td>
<td>264</td>
<td>7.881</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>País Vasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustible</td>
</tr>
<tr>
<td>Gasolina</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Antes de 1989</td>
</tr>
<tr>
<td>20.238</td>
</tr>
<tr>
<td>1989</td>
</tr>
<tr>
<td>1990</td>
</tr>
<tr>
<td>1991</td>
</tr>
<tr>
<td>1992</td>
</tr>
<tr>
<td>1993</td>
</tr>
<tr>
<td>1994</td>
</tr>
<tr>
<td>1995</td>
</tr>
<tr>
<td>1996</td>
</tr>
<tr>
<td>1997</td>
</tr>
<tr>
<td>1998</td>
</tr>
<tr>
<td>1999</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>2001</td>
</tr>
<tr>
<td>2002</td>
</tr>
<tr>
<td>2003</td>
</tr>
<tr>
<td>2004</td>
</tr>
<tr>
<td>2005</td>
</tr>
<tr>
<td>2006</td>
</tr>
<tr>
<td>2007</td>
</tr>
<tr>
<td>2008</td>
</tr>
</tbody>
</table>

Estimación de la antigüedad del parque de vehículos en el País Vasco para el año 2008 a partir del parque total de vehículos en nuestra comunidad y de la antigüedad del parque de todo el estado. Fuente: elaboración propia.
Los factores de emisión, tal y como se ha mencionado, se han obtenido de la normativa al respecto vigente en cada momento. Estos factores se han relacionado con los vehículos matriculados en el periodo en que ha estado vigente cada una de las normativas. De esta forma, comparando los resultados de 2008 con los de 2004, hemos obtenido la evolución de las ratios de emisiones que se aplicarán a los vehículos. El estudio se ha centrado en los factores de emisión de partículas ya que son los que, con diferencia, suponen un mayor volumen de costes externos.

A continuación vemos las tablas que nos muestran los valores fijados por las sucesivas normativas sobre emisiones emitidas por la UE, acompañadas del año de entrada en vigor.

| Normas europeas sobre emisiones para turismos (categoría M1), en g/km |
|-----------------------------|-----------------|-------|-------|-------|-------|
| Tipo | Fecha | CO | HC | HC+NOx| NOx |
| Diésel | | | | | |
| Euro I | Julio de 1992 | 2.72 | (3.16)| 0.97 | (1.13)| 0.14 | (0.18)|
| Euro II, IDI | Enero de 1996 | 1.0 | - | 0.7 | - | 0.08 | |
| Euro II, DI | Enero de | 1.0 | - | 0.9 | - | 0.10 | |
| Euro III | Enero de 2000 | 0.54 | - | 0.56 | - | 0.50 | 0.05 |
| Euro IV | Enero de 2005 | 0.50 | - | 0.30 | - | 0.25 | 0.025 |
| Euro V (propuesto) | Septiembre de | 0.50 | - | 0.23 | - | 0.18 | 0.005 |
| Euro VI (propuesto) | Septiembre de | 0.50 | - | 0.17 | - | 0.08 | 0.005 |
| Gasolina | | | | | |
| Euro I | Julio de 1992 | 2.72 | (3.16)| 0.97 | (1.13)| - | |
| Euro II | Enero de 1996 | 2.2 | - | 0.5 | - | - | |
| Euro III | Enero de 2000 | 2.30 | 0.20 | - | 0.15 | - | |
| Euro IV | Enero de 2005 | 1.0 | 0.10 | - | 0.08 | - | |
| Euro V (propuesto) | Septiembre de | 1.0 | 0.10 | - | 0.06 | 0.005 |
| Euro VI (propuesto) | Septiembre de | 1.0 | 0.10 | - | 0.06 | 0.005 |

Antes de Euro V turismos > 2500 kg estaban clasificados en la categoría Vehículo Industrial ligero N1 - I

Límites de emisiones según las diferentes normativas implantadas por la UE para los vehículos ligeros según ensayos estandarizados. Fuente: Referencia bibliográfica 41. Página web de wikipedia sobre normativas de emisiones de la UE.
Límites de emisiones según las diferentes normativas implantadas por la UE para los vehículos ligeros según ensayos estandarizados. Fuente: Referencia bibliográfica 41. Página web de wikipedia sobre normativas de emisiones de la UE.

Dado que las normativas se refieren a aspectos diferentes –en caso de vehículos ligeros a g/km y en caso de pesados a g/kWh- y a determinadas características de los ensayos, lo que procede es estimar la variación proporcional de las ratios de emisiones desde el año 2004 hasta el año 2008. Las tablas referidas a este proceso se muestran a continuación, referidas a los vehículos diesel, ya que las emisiones que se van a considerar –en una primera estimación de la evolución de los costes externos- son las de partículas, asociadas éstas a los motores de gasóleo.
Valores 2004 referidos a partículas

<table>
<thead>
<tr>
<th>Camiones y furgonetas</th>
<th>Autobuses</th>
<th>Turismos de gasóleo</th>
<th>Tractores industriales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores ponderados por volumen de vehículos</td>
<td>Fátor de emisión</td>
<td>Valores ponderados por volumen de vehículos</td>
<td>Fátor de emisión</td>
</tr>
<tr>
<td>5.284</td>
<td>0.5</td>
<td>167</td>
<td>0.5</td>
</tr>
<tr>
<td>387</td>
<td>0.5</td>
<td>11</td>
<td>0.5</td>
</tr>
<tr>
<td>610</td>
<td>0.5</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>928</td>
<td>0.5</td>
<td>21</td>
<td>0.5</td>
</tr>
<tr>
<td>1.458</td>
<td>0.5</td>
<td>33</td>
<td>0.5</td>
</tr>
<tr>
<td>1.915</td>
<td>0.5</td>
<td>40</td>
<td>0.5</td>
</tr>
<tr>
<td>2.445</td>
<td>0.5</td>
<td>55</td>
<td>0.5</td>
</tr>
<tr>
<td>1.636</td>
<td>0.5</td>
<td>51</td>
<td>0.5</td>
</tr>
<tr>
<td>2.533</td>
<td>0.5</td>
<td>54</td>
<td>0.5</td>
</tr>
<tr>
<td>2.752</td>
<td>0.5</td>
<td>58</td>
<td>0.5</td>
</tr>
<tr>
<td>2.022</td>
<td>0.5</td>
<td>40</td>
<td>0.5</td>
</tr>
<tr>
<td>2.433</td>
<td>0.5</td>
<td>37</td>
<td>0.5</td>
</tr>
<tr>
<td>2.736</td>
<td>0.5</td>
<td>55</td>
<td>0.5</td>
</tr>
<tr>
<td>1.590</td>
<td>0.25</td>
<td>32</td>
<td>0.25</td>
</tr>
<tr>
<td>1.909</td>
<td>0.25</td>
<td>36</td>
<td>0.25</td>
</tr>
<tr>
<td>1.380</td>
<td>0.15</td>
<td>24</td>
<td>0.15</td>
</tr>
<tr>
<td>1.643</td>
<td>0.12</td>
<td>26</td>
<td>0.15</td>
</tr>
<tr>
<td>1.275</td>
<td>0.12</td>
<td>18</td>
<td>0.12</td>
</tr>
<tr>
<td>1.217</td>
<td>0.12</td>
<td>19</td>
<td>0.12</td>
</tr>
<tr>
<td>1.172</td>
<td>0.12</td>
<td>17</td>
<td>0.12</td>
</tr>
<tr>
<td>1.340</td>
<td>0.12</td>
<td>18</td>
<td>0.12</td>
</tr>
<tr>
<td>1.549</td>
<td>0.12</td>
<td>20</td>
<td>0.12</td>
</tr>
</tbody>
</table>

PM promedio: 0,28, 0,32, 0,07, 0,23

Valores 2008 referidos a partículas

<table>
<thead>
<tr>
<th>Camiones y furgonetas</th>
<th>Autobuses</th>
<th>Turismos de gasóleo</th>
<th>Tractores industriales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores ponderados por volumen de vehículos</td>
<td>Fátor de emisión</td>
<td>Valores ponderados por volumen de vehículos</td>
<td>Fátor de emisión</td>
</tr>
<tr>
<td>8.755</td>
<td>0.5</td>
<td>199</td>
<td>0.5</td>
</tr>
<tr>
<td>1.722</td>
<td>0.5</td>
<td>21</td>
<td>0.5</td>
</tr>
<tr>
<td>1.891</td>
<td>0.5</td>
<td>23</td>
<td>0.5</td>
</tr>
<tr>
<td>1.809</td>
<td>0.5</td>
<td>29</td>
<td>0.5</td>
</tr>
<tr>
<td>2.145</td>
<td>0.5</td>
<td>38</td>
<td>0.5</td>
</tr>
<tr>
<td>1.620</td>
<td>0.5</td>
<td>33</td>
<td>0.5</td>
</tr>
<tr>
<td>1.973</td>
<td>0.5</td>
<td>33</td>
<td>0.5</td>
</tr>
<tr>
<td>2.234</td>
<td>0.5</td>
<td>49</td>
<td>0.5</td>
</tr>
<tr>
<td>1.338</td>
<td>0.25</td>
<td>29</td>
<td>0.25</td>
</tr>
<tr>
<td>1.704</td>
<td>0.25</td>
<td>33</td>
<td>0.25</td>
</tr>
<tr>
<td>1.222</td>
<td>0.15</td>
<td>23</td>
<td>0.15</td>
</tr>
<tr>
<td>1.483</td>
<td>0.15</td>
<td>26</td>
<td>0.15</td>
</tr>
<tr>
<td>1.169</td>
<td>0.12</td>
<td>18</td>
<td>0.12</td>
</tr>
<tr>
<td>1.823</td>
<td>0.12</td>
<td>15</td>
<td>0.12</td>
</tr>
<tr>
<td>1.084</td>
<td>0.12</td>
<td>17</td>
<td>0.12</td>
</tr>
<tr>
<td>1.239</td>
<td>0.12</td>
<td>18</td>
<td>0.12</td>
</tr>
<tr>
<td>1.408</td>
<td>0.12</td>
<td>20</td>
<td>0.12</td>
</tr>
<tr>
<td>1.619</td>
<td>0.12</td>
<td>23</td>
<td>0.12</td>
</tr>
<tr>
<td>277</td>
<td>0.02</td>
<td>4</td>
<td>0.02</td>
</tr>
<tr>
<td>281</td>
<td>0.02</td>
<td>4</td>
<td>0.02</td>
</tr>
<tr>
<td>159</td>
<td>0.02</td>
<td>4</td>
<td>0.02</td>
</tr>
</tbody>
</table>

PM promedio: 0,21, 0,22, 0,06, 0,15

Valores respecto a 2004:
- Camiones y furgonetas: 73%
- Autobuses: 71%
- Turismos de gasóleo: 74%
- Tractores industriales: 66%

Evolución de los factores de emisión de partículas entre los años 2004 y 2008 referidos a distintos tipos de vehículos de tracción diesel. Fuente: elaboración propia.
3.4 **Evolución del transporte público de personas**

A continuación mostramos cuál ha sido la variación de la oferta y demanda de transporte colectivo en el País Vasco en el período 2004 – 2008. En el caso del transporte en autobús, hemos correlacionado la variación proporcional total del número de viajeros a la variación de los viajeros-km del año 2004. De forma similar se ha procedido para la estimación de los viajeros-km de RENFE y de FEVE.

Estos datos son empleados en todas las categorías de coste.

TRANSPORTE PÚBLICO

<table>
<thead>
<tr>
<th>Autobuses urbanos</th>
<th>Viajeros en miles</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilbobus</td>
<td>25.518</td>
<td>26.004</td>
<td></td>
</tr>
<tr>
<td>CTSS - Donostibus</td>
<td>26.003</td>
<td>28.003</td>
<td></td>
</tr>
<tr>
<td>TUVISA</td>
<td>11.805</td>
<td>12.643</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>63.326</td>
<td>66.650</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autobuses interurbanos</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bizkaia</td>
<td>36.876</td>
<td>30.196</td>
</tr>
<tr>
<td>Gipuzkoa</td>
<td>16.627</td>
<td>17.185</td>
</tr>
<tr>
<td>Álava</td>
<td>333</td>
<td>348</td>
</tr>
<tr>
<td>TOTAL</td>
<td>53.836</td>
<td>47.729</td>
</tr>
</tbody>
</table>

TOTAL AUTOBÚS 117.162 114.379

TOTAL AUTOBÚS

<table>
<thead>
<tr>
<th>Viajeros-km en millones</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>2008</td>
</tr>
<tr>
<td>1.860</td>
<td>1.812</td>
</tr>
</tbody>
</table>

Ferrocarril 2008

<table>
<thead>
<tr>
<th>Ferrocarril</th>
<th>Trenes-km en miles</th>
<th>Viajeros en miles</th>
<th>Viajeros-km en millones</th>
</tr>
</thead>
<tbody>
<tr>
<td>RENFE</td>
<td>4.700</td>
<td>25.785</td>
<td>351</td>
</tr>
<tr>
<td>EuskoTren</td>
<td>4.595</td>
<td>17.941</td>
<td>286</td>
</tr>
<tr>
<td>Metro Bilbao</td>
<td>4.176</td>
<td>86.334</td>
<td>546</td>
</tr>
<tr>
<td>FEVE</td>
<td>720</td>
<td>1.506</td>
<td>20</td>
</tr>
<tr>
<td>EuskoTran</td>
<td>315</td>
<td>2.948</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTAL FERROCARRIL 14.506 134.514 1.210

Ferrocarril 2004 13.842 123.645 1.147

Nota: en el caso del transporte interurbano de Álava se han considerado los resultados del año 2003, similares a los de 2005, ya que temporalmente en 2004 se produjo una modificación coyuntural en ciertos servicios suburbanos.
3.5 **Evolución del transporte de mercancías**

Para la determinación de la evolución del transporte de mercancías distinguimos entre el transporte por carretera y el transporte por ferrocarril. Estos datos son empleados en todas las categorías de coste.

3.5.1 **Transporte de mercancías por carretera**

En el primero ya hemos realizado una aproximación en el capítulo sobre evolución del tráfico. En este contrastamos los resultados con la evolución del las toneladas transportadas como vemos en la siguiente tabla referida al intervalo 2005 - 2008.

<table>
<thead>
<tr>
<th>Tipo de desplazamiento</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Miles Tn.</td>
<td>% anual</td>
<td>Miles Tn.</td>
<td>% anual</td>
</tr>
<tr>
<td>Transporte intrarregional1</td>
<td>79.122</td>
<td>82.523</td>
<td>80.166</td>
<td>76.823</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>4,3%</td>
<td>-2,9%</td>
<td>-4,2%</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>22,6%</td>
<td>16,9%</td>
<td>-13,9%</td>
</tr>
<tr>
<td>Inter-municipal</td>
<td>59.635</td>
<td>58.634</td>
<td>61.845</td>
<td>59.182</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-1,7%</td>
<td>5,5%</td>
<td>-4,3%</td>
</tr>
<tr>
<td>Transporte interregional2</td>
<td>47.474</td>
<td>49.609</td>
<td>55.838</td>
<td>50.473</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>4,5%</td>
<td>12,6%</td>
<td>-9,6%</td>
</tr>
<tr>
<td>Recibido de otras CC.AA.</td>
<td>23.448</td>
<td>24.244</td>
<td>28.343</td>
<td>24.140</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>3,4%</td>
<td>16,9%</td>
<td>-13,9%</td>
</tr>
<tr>
<td>Expedido a otras CC.AA.</td>
<td>24.026</td>
<td>25.365</td>
<td>27.495</td>
<td>26.063</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>5,6%</td>
<td>8,4%</td>
<td>-5,2%</td>
</tr>
<tr>
<td>Transporte internacional</td>
<td>5.260</td>
<td>4.789</td>
<td>6.042</td>
<td>5.828</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-5,6%</td>
<td>26,2%</td>
<td>-3,5%</td>
</tr>
<tr>
<td>Recibido</td>
<td>2.283</td>
<td>2.035</td>
<td>2.548</td>
<td>2.620</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-10,9%</td>
<td>25,2%</td>
<td>2,8%</td>
</tr>
<tr>
<td>Expedido</td>
<td>2.977</td>
<td>2.754</td>
<td>3.494</td>
<td>3.208</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>7,5%</td>
<td>26,9%</td>
<td>-5,2%</td>
</tr>
<tr>
<td>Total CAPV</td>
<td>131.856</td>
<td>136.921</td>
<td>142.046</td>
<td>133.124</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>3,8%</td>
<td>3,7%</td>
<td>-6,3%</td>
</tr>
</tbody>
</table>

(1)Con origen y destino CAPV (incluye el transporte intermunicipal y el intramunicipal).

Tabla con los resultados de evolución del transporte de mercancías por carretera en la CAPV. Fuentes: referencia bibliográfica 37, Panorama del transporte en Euskadi 2008.

Tomaremos como referencia de la evolución los datos de 2005. En el intervalo comprendido entre este año y 2008 el incremento de toneladas transportadas ha sido del 1%, similar el valor obtenido en cuanto al volumen de tráfico de pesados entre 2004 y 2008.

3.5.2 **Transporte de mercancías por ferrocarril**

En cuanto al tráfico de mercancías por ferrocarril emplearemos datos de diversas fuentes. En el caso de RENFE nos apoyamos en la evolución del tráfico de mercancías en toda su red entre 2004 y 2008 y aplicamos los resultados a los datos del País Vasco de 2004 del anterior estudio de costes externos. Así tenemos los siguientes resultados.

Evolución del tráfico de mercancías de RENFE en toda la red

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Millones de Tm. -km</td>
<td>11.927</td>
<td>9.737</td>
<td>-18%</td>
</tr>
<tr>
<td>Aplicación de los resultados al País Vasco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millones de Tm. -km</td>
<td>507</td>
<td>414</td>
<td>-18%</td>
</tr>
<tr>
<td>Miles de trenes-km</td>
<td>1.661</td>
<td>1.356</td>
<td>-18%</td>
</tr>
</tbody>
</table>

La determinación de la evolución del tráfico de FEVE y Euskotren se ha realizado en función de las toneladas transportadas por dichas compañías en los años 2004 y 2008. A continuación se reproducen los resultados obtenidos.

Evolución del tráfico de mercancías de FEVE y Euskotren

<table>
<thead>
<tr>
<th>Miles de Tm</th>
<th>2004</th>
<th>2008</th>
<th>Variación 2008/2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEVE</td>
<td>1.092</td>
<td>1.054</td>
<td>-4%</td>
</tr>
<tr>
<td>Euskotren</td>
<td>165</td>
<td>183</td>
<td>11%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FEVE</td>
<td>41</td>
<td>40</td>
<td>-4%</td>
</tr>
<tr>
<td>Euskotren</td>
<td>16</td>
<td>18</td>
<td>11%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miles de trenes-km</th>
<th>2004</th>
<th>2008</th>
<th>Variación 2008/2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEVE</td>
<td>138</td>
<td>133</td>
<td>-4%</td>
</tr>
<tr>
<td>Euskotren</td>
<td>53</td>
<td>59</td>
<td>11%</td>
</tr>
</tbody>
</table>

Fuente: referencia bibliográfica 1, Costes Externos del Transporte en el País Vasco; referencia bibliográfica 37, Panorámica del transporte en Euskadi 2008; elaboración propia.

Los resultados totales del transporte de mercancías por ferrocarril en 2008 son:

- Miles de trenes-km: 1.548
- Millones de Tm-km: 471

3.6 Evolución del tráfico urbano

La evolución del tráfico urbano se ha determinado por medio del modelo de transporte. Este modelo fue el empleado en la recreación de la situación del año 2004 y se ha utilizado en este estudio para la recreación de la situación en 2008 con los datos de 2008. Para más información nos remitimos al estudio anterior, referencia bibliográfica 1, Costes Externos del Transporte en el País Vasco. Esta herramienta nos permite conocer la distribución del tráfico en ligeros y pesados en la zona que deseemos estudiar. De la comparativa entre los escenarios de 2004 y de 2008, y aplicando la misma proporción a los datos empleados en 2004, hemos podido establecer cuál ha sido la evolución del tráfico en las áreas urbanas del País Vasco.

Los resultados de evolución del tráfico urbano en día laborable son los que figuran a continuación expresados en vehículos-km:

- **Ligeros**
 - 2004: 4,940,254
 - 2008: 5,348,924
 - Incremento: 8%

- **Pesados**
 - 2004: 374,731
 - 2008: 395,275
 - Incremento: 5%

Tráfico urbano en el País Vasco. Fuente: modelo de transporte, elaboración propia.

60 Referencia bibliográfica 37. Panorámica del transporte en Euskadi 2008
3.7 Evolución de las infraestructuras

La evolución de las infraestructuras viales se ha determinado mediante la consulta de los documentos sobre aforos de las diputaciones forales y de mapas de carreteras. Los resultados comparados de los años 2004 y 2008 se muestran a continuación.

Carreteras autopistas y autovías

<table>
<thead>
<tr>
<th>Tipo</th>
<th>2004</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longitud (Km)</td>
<td>Longitud (km)</td>
</tr>
<tr>
<td>Álava</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alta capacidad</td>
<td>173</td>
<td>179</td>
</tr>
<tr>
<td>Carreteras</td>
<td>1296</td>
<td>1296</td>
</tr>
<tr>
<td>Total</td>
<td>1469</td>
<td>1475</td>
</tr>
<tr>
<td>Bizkaia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alta capacidad</td>
<td>180</td>
<td>190</td>
</tr>
<tr>
<td>Carreteras</td>
<td>1269</td>
<td>1269</td>
</tr>
<tr>
<td>Total</td>
<td>1449</td>
<td>1459</td>
</tr>
<tr>
<td>Gipuzkoa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alta capacidad</td>
<td>154</td>
<td>157</td>
</tr>
<tr>
<td>Carreteras</td>
<td>1194</td>
<td>1194</td>
</tr>
<tr>
<td>Total</td>
<td>1348</td>
<td>1351</td>
</tr>
<tr>
<td>CAPV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alta capacidad*</td>
<td>507</td>
<td>526</td>
</tr>
<tr>
<td>Carreteras**</td>
<td>3759</td>
<td>3759</td>
</tr>
<tr>
<td>Total</td>
<td>4266</td>
<td>4285</td>
</tr>
</tbody>
</table>

Evolución de las infraestructuras viales en el País Vasco entre los años 2004 y 2008. Fuentes: referencia bibliográfica 1, Costes Externos del Transporte en el País Vasco; referencia bibliográfica 34, Evolución del tráfico en las carreteras de Bizkaia 2008; referencia bibliográfica 35, Evolución del tráfico en las carreteras de Bizkaia 2004; referencia bibliográfica 36, Información de aforos en las carreteras de Gipuzkoa, recopilación hasta el año 2008; mapa de carreteras de Álava; elaboración propia.

En lo que se refiere a la evolución de la red ferroviaria entre los años 2004 y 2008, como sólo nos interesa aquella que discurre en superficie que haya entrado en servicio, no se observan variaciones desde el año 2004. No se ve afectada por tanto por las ampliaciones del metro, que van en túnel, ni las obras de la alta velocidad que se están llevando a cabo y aún no han entrado en funcionamiento.

Estos datos se utilizan para la determinación de los costes de naturaleza y paisaje.
3.8 PRODUCCIÓN DE ENERGÍA ELÉCTRICA

Esta información se emplea en la estimación de los costes externos del ferrocarril exclusivamente. A fin de poder evaluar parte de los efectos indirectos derivados de la generación de energía de tracción para la circulación de los trenes, hemos indagado en la evolución que han tenido las fuentes de generación de energía en el sistema eléctrico español. La información la hemos obtenido del organismo Red Eléctrica de España (REE) a través de su página web y los resultados los reproducimos a continuación.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>34.439</td>
<td>13</td>
<td>25.844</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td>63.606</td>
<td>24</td>
<td>58.973</td>
<td>20,6</td>
<td></td>
</tr>
<tr>
<td>Carbón</td>
<td>76.659</td>
<td>28,9</td>
<td>46.926</td>
<td>16,4</td>
<td></td>
</tr>
<tr>
<td>Petróleo</td>
<td>13.132</td>
<td>5</td>
<td>5.234</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Ciclo combinado</td>
<td>55.460</td>
<td>20,9</td>
<td>110.546</td>
<td>38,6</td>
<td></td>
</tr>
<tr>
<td>Residuos urbanos e industriales</td>
<td>678</td>
<td>0,3</td>
<td>1.934</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>Biomasa</td>
<td>5.834</td>
<td>2,2</td>
<td>2.437</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Eólica</td>
<td>15.270</td>
<td>5,8</td>
<td>31.393</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td>54</td>
<td>0</td>
<td>2.812</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>265.133</td>
<td></td>
<td>286.099</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuentes: referencia bibliográfica 1, Costes Externos del Transporte en el País Vasco; referencia bibliográfica 46, Página web de Red Eléctrica de España; Elaboración propia.

A partir de estos datos de generación, y teniendo en cuenta la ponderación de emisiones de gases de efecto invernadero (GEI) de cada una de las fuentes de energía, obtenemos la variación proporcional de aquéllas en el intervalo de tiempo observado.

Los factores de la ponderación por unidad de energía producida se han obtenido a partir de los datos de emisiones en tiempo real que ofrece la página web de REE. Los factores se muestran en la tabla siguiente, en la que se ve que para el carbón le hemos otorgado el valor 1 como elemento patrón de referencia. Los valores ponderados de emisiones de GEI de 2004 y 2008 de cada fuente de generación se muestran en las otras dos columnas.

<table>
<thead>
<tr>
<th>Fuente de generación</th>
<th>Factor de ponderación 2004</th>
<th>2008</th>
<th>Relación 2008/2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nuclear</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón</td>
<td>1</td>
<td>28,9</td>
<td>16,4</td>
</tr>
<tr>
<td>Petróleo</td>
<td>0,71</td>
<td>3,6</td>
<td>1,3</td>
</tr>
<tr>
<td>Ciclo combinado</td>
<td>0,39</td>
<td>8,2</td>
<td>15,1</td>
</tr>
<tr>
<td>Residuos + biomasa</td>
<td>0,28</td>
<td>0,7</td>
<td>0,4</td>
</tr>
<tr>
<td>Eólica</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solar</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>41,4</td>
<td>33,2</td>
<td>80,2%</td>
</tr>
</tbody>
</table>

Relación entre las emisiones de GEI derivados de la generación de una unidad de energía eléctrica entre los años 2004 y 2008. Fuente: elaboración propia.

Esto muestra cómo desde 2004 hasta 2008 las emisiones de gases de efecto invernadero por unidad de energía eléctrica producida han disminuido en un 19,8%.

61 Referencia bibliográfica 46. Página web de Red Eléctrica de España
3.9 **Evolución de la congestión**

Con el objetivo de conocer la relación entre el tráfico circulante por las vías y la capacidad de las mismas, y de ahí la evolución de la congestión vial, hemos consultado los registros de los años 2004 y 2008 en las vías del entorno de las dos áreas metropolitanas del País Vasco: Bilbao metropolitano y Donostialdea.

Hemos de comentar que en el año 2008 aún se encontraban en obras varias mejoras viarias destinadas a la reducción de la congestión. Entre ellas se encuentra el tercer carril del Txorierri, el tercer carril de la AP-8 en San Sebastián sentido Bilbao, el segundo cinturón de San Sebastián… que, o bien ya han entrado en servicio en 2009, o bien lo harán en el año 2010. De este hecho se deriva que sus efectos no se hayan contabilizado en la evolución de la congestión en el periodo 2004-2008, lo que podría llevar a conclusiones erróneas o infundadas de que las medidas destinadas a mitigarla no fuesen eficaces.

Bilbao metropolitano

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Txorierri</td>
<td>N-637 99-C</td>
<td>63,480</td>
<td>76,282</td>
<td>5</td>
<td>5</td>
<td>12,700</td>
<td>15,300</td>
</tr>
<tr>
<td>La Avanzada</td>
<td>BI-637 83-A</td>
<td>96,602</td>
<td>114,856</td>
<td>4</td>
<td>4</td>
<td>24,700</td>
<td>28,700</td>
</tr>
<tr>
<td>Rondelgí</td>
<td>N-637 45-A</td>
<td>121,111</td>
<td>140,270</td>
<td>8</td>
<td>8</td>
<td>15,100</td>
<td>17,500</td>
</tr>
<tr>
<td>Solución Sur</td>
<td>A-8 22-A</td>
<td>127,407</td>
<td>130,881</td>
<td>6</td>
<td>6</td>
<td>21,200</td>
<td>21,800</td>
</tr>
<tr>
<td>Solución Ugaldebieta</td>
<td>A-8 179-A</td>
<td>112,834</td>
<td>113,784</td>
<td>6</td>
<td>6</td>
<td>18,800</td>
<td>19,000</td>
</tr>
<tr>
<td>Enekuri</td>
<td>BI-604 76-A</td>
<td>46,025</td>
<td>50,396</td>
<td>2</td>
<td>4</td>
<td>23,000</td>
<td>12,600</td>
</tr>
<tr>
<td>Bilbao-Etxebarri</td>
<td>N-634 1-A</td>
<td>45,072</td>
<td>40,132</td>
<td>4</td>
<td>4</td>
<td>11,300</td>
<td>10,000</td>
</tr>
<tr>
<td>Autopista Bilbao-Behobia</td>
<td>A-8 26-A</td>
<td>95,375</td>
<td>94,293</td>
<td>6</td>
<td>6</td>
<td>15,900</td>
<td>15,700</td>
</tr>
<tr>
<td>Santo Domingo</td>
<td>BI-631 98-A</td>
<td>31,220</td>
<td>30,624</td>
<td>2</td>
<td>2</td>
<td>15,600</td>
<td>15,300</td>
</tr>
</tbody>
</table>

Donostialdea

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Autopista Bilbao-Behobia</td>
<td>AP-8 249</td>
<td>35,360</td>
<td>39,155</td>
<td>4</td>
<td>4</td>
<td>8,800</td>
<td>9,800</td>
</tr>
<tr>
<td>Autopista Bilbao-Behobia</td>
<td>AP-8 279</td>
<td>38,646</td>
<td>43,839</td>
<td>6</td>
<td>6</td>
<td>6,400</td>
<td>7,300</td>
</tr>
<tr>
<td>Variante de San Sebastián</td>
<td>A-8 117</td>
<td>109,823</td>
<td>112,012</td>
<td>6</td>
<td>6</td>
<td>18,300</td>
<td>18,700</td>
</tr>
<tr>
<td>Madrid-íñur (Pasajes)</td>
<td>N-I 36</td>
<td>33,608</td>
<td>32,170</td>
<td>2</td>
<td>2</td>
<td>16,800</td>
<td>16,100</td>
</tr>
<tr>
<td>Madrid-íñur (Irun)</td>
<td>N-I 84</td>
<td>34,322</td>
<td>36,401</td>
<td>2</td>
<td>2</td>
<td>17,200</td>
<td>18,200</td>
</tr>
<tr>
<td>Madrid-íñur (Lasarte)</td>
<td>N-I 247</td>
<td>60,076</td>
<td>68,831</td>
<td>6</td>
<td>6</td>
<td>10,000</td>
<td>11,500</td>
</tr>
<tr>
<td>Corredor del Urumea (Urnieta)</td>
<td>G-131 120</td>
<td>16,611</td>
<td>19,923</td>
<td>2</td>
<td>2</td>
<td>8,300</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Evolución del tráfico y dimensiones de las principales carreteras del entorno metropolitano de Bilbao entre 2004 y 2008; se marca en color sepia el tramo que ha experimentado un aumento de capacidad en dicho periodo. Fuentes: referencia bibliográfica 35, Evolución del tráfico en las carreteras de Bizkaia 2004; referencia bibliográfica 34, Evolución del tráfico en las carreteras de Bizkaia 2008; elaboración propia.

4 RESULTADOS

Los resultados que mostramos a continuación se obtienen en algunos casos del modelo de estimación de costes externos empleado para el año 2004. En otros se han obtenido de la aplicación directa de la evolución de los factores que determinan dichos costes externos.

4.1 COSTES POR CAMBIO CLIMÁTICO

Para la estimación de los costes por cambio climático se ha considerado la evolución del tráfico de cada uno de los modos de transporte con respecto a 2004 que hemos visto en apartados anteriores. Los factores de emisión de dióxido de carbono se han considerado similares a los de 2004 al no disponer de información sobre posibles variaciones de dichos factores de emisión. Los costes externos por cambio climático debido a la emisión de gases de efecto invernadero son los siguientes.

Año 2008

![Diagrama de barras para el año 2008]

Año 2004

![Diagrama de barras para el año 2004]
Los costes asociados a las emisiones de gases de efecto invernadero del transporte han experimentado por tanto un incremento leve de entre 3.000 € y 7.000 € anuales según se consideren los costes a corto o a largo plazo. Esto supone un incremento proporcional de estos costes del 5%. La causa ha sido la sensible estabilización de los flujos de tráfico en 2008 con respecto a 2004, debido en gran medida a la finalización de la tendencia creciente de estos flujos que se produjo en 2008.

Recordamos que para los costes por cambio climático finalmente adoptamos el supuesto denominado de “corto plazo”, acorde al sistema europeo de comercio de emisiones. Ver explicación en el apartado 2.2.5 del Documento I de este estudio, y para más detalle se puede consultar el estudio anterior publicado en 2006 (referencia bibliográfica 1).

A continuación mostramos en más detalle las emisiones de GEI asociadas a cada uno de los modos de transporte en el año 2008.

Emisiones de GEI en miles de Tm por cada modo de transporte en el año 2008. Fuente: elaboración propia.
4.2 COSTES POR ACCIDENTES

Para la estimación de los costes por accidentes hemos utilizado los registros que figuran en el apartado correspondiente del presente documento. La valoración de cada tipo de accidente ha sido la misma que la que se realizó en el año 2004, así como relación entre siniestros declarados y siniestros estimados. En cuanto a los costes asociados al ferrocarril, se considera que se mantienen estables desde 2004 dado que no ha sido posible contrastar datos de ambos años, aparte de encontrarse en niveles muy bajos.

Los resultados obtenidos son los siguientes.

Año 2008

Año 2004
Los resultados arrojan un descenso muy importante de los costes por siniestrabilidad, ya que pasan de los 780 a los 535 millones de euros (245 millones de € menos), lo que equivale a una bajada del 31%. En valores absolutos, el tipo de vehículo cuyos costes han descendido más ha sido el automóvil de turismo con una bajada de 180 millones de euros. Proporcionalmente los camiones han experimentado el mayor descenso con una bajada del 52% en los costes.

Los valores unitarios por unidad transportada son los siguientes, en céntimos de €/pasajero-km y céntimos de €/Tm-km.

4.3 Costes por ruido

Los costes por ruido se han estimado a partir de los costes por modo resultantes en el año 2004. A estos se les ha aplicado la evolución del tráfico urbano que hemos visto en apartados anteriores para poder obtener los costes externos totales por ruido. Estos costes se refieren tanto a los derivados de las enfermedades cardiovasculares asociadas al estrés provocado por altos niveles de ruido, como a la pérdida de valor de inmuebles debida a la falta de calidad ambiental que conlleva la presencia de ruido en el entorno de los mismos. Los resultados de estos costes se presentan a continuación.

Año 2008

<table>
<thead>
<tr>
<th>Modo</th>
<th>Costes por ruido 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turismos</td>
<td>41.400 €</td>
</tr>
<tr>
<td>Autobuses</td>
<td>1.900 €</td>
</tr>
<tr>
<td>Furgonetas</td>
<td>5.800 €</td>
</tr>
<tr>
<td>Camiones</td>
<td>22.800 €</td>
</tr>
<tr>
<td>Pasajeros</td>
<td>3.600 €</td>
</tr>
<tr>
<td>Mercancías</td>
<td>380 €</td>
</tr>
</tbody>
</table>

Año 2004

<table>
<thead>
<tr>
<th>Modo</th>
<th>Costes por ruido 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turismos</td>
<td>38.300 €</td>
</tr>
<tr>
<td>Autobuses</td>
<td>2.900 €</td>
</tr>
<tr>
<td>Furgonetas</td>
<td>5.500 €</td>
</tr>
<tr>
<td>Camiones</td>
<td>21.100 €</td>
</tr>
<tr>
<td>Pasajeros</td>
<td>3.600 €</td>
</tr>
<tr>
<td>Mercancías</td>
<td>380 €</td>
</tr>
</tbody>
</table>
Los costes totales por ruido experimentan un aumento de 10 millones de €, pasando de los 149 millones a los 159 millones. Esto supone un aumento inferior al 7%. Esta situación se debe al incremento de tráfico urbano que se ha experimentado en el conjunto del País Vasco, si bien pueden existir importantes diferencias entre los diversos núcleos.

Dada la metodología empleada, los costes unitarios por unidad transportada resultan ser los mismos que en el año 2004, los cuales reproducimos a continuación.

Costes unitarios por ruido por unidad transportada según modo de transporte. Fuente: referencia bibliográfica 1, Costes Externos del Transporte en el País Vasco.
4.4 **Costes por contaminación del aire**

Los costes por contaminación del aire se han actualizado a partir del tráfico urbano de cada modo de transporte y de la evolución de las emisiones medias de partículas asociadas a cada modo entre los años 2004 y 2008 según se mostró en el apartado “Parque de vehículos”. En éste se analizaba la evolución de la composición del mismo y las emisiones asociadas a los distintos tipos de vehículos según su antigüedad. En el caso de los turismos, se ha ponderado el peso de los vehículos de gasolina y gasóleo en función del parque de cada uno de ellos en los dos años mencionados. Estos costes son los derivados del impacto que las emisiones de los vehículos tienen, sobre todo, en la salud de las personas en forma de enfermedades respiratorias. También se valora, aunque con un montante mucho menor, el impacto en las cosechas. Los resultados obtenidos se muestran a continuación.

Año 2008

![Gráfico Año 2008](image)

Año 2004

![Gráfico Año 2004](image)
La disminución de costes externos es de 38 millones de €, ya que pasamos de 517 millones en 2004 a 479 millones en 2008. Esto supone una reducción de más del 7%. En cuanto al volumen total de los costes, resulta ser de bastante importancia. Esto se ha logrado esencialmente gracias a los requerimientos más estrictos en cuanto a emisiones de los vehículos matriculados en la UE. Como se puede observar, este tipo de medidas están cumpliendo sus expectativas de disminución de la contaminación del aire.

A continuación mostramos los costes unitarios en forma de céntimos de € por unidad transportada según modo.

Costes unitarios por contaminación del aire por unidad transportada. Fuente: elaboración propia.
4.5 **Costes de naturaleza y paisaje**

Los costes para la naturaleza y el paisaje tienen dos componentes. Por una parte está la derivada de la propia actividad del transporte (contaminación de suelos), por otro la de las infraestructuras (permeabilización/restauración). La primera de las componentes varía en función de la intensidad de tráfico en las vías. En este caso la evolución desde el año 2004 hasta 2008 se estima en función de la variación del tráfico de vehículos de modo desagregado por cada una de las categorías de vehículo, para lo que nos apoyaremos en el apartado de datos previos sobre la “evolución de tráfico”. La segunda componente lo hace en función de la ocupación de terreno por las infraestructuras. En este caso nos basaremos en la variación de la longitud de las infraestructuras de transporte desde el año 2004 hasta 2008 según figura en el apartado “evolución de las infraestructuras”.

A continuación mostramos los resultados de la actualización de estos costes.

Año 2008

<table>
<thead>
<tr>
<th>Turismos</th>
<th>Motocicletas</th>
<th>Autobuses</th>
<th>Furgonetas</th>
<th>Camiones</th>
<th>Pasajeros</th>
<th>Mercancías</th>
</tr>
</thead>
<tbody>
<tr>
<td>29,500</td>
<td>4,561</td>
<td>8,800</td>
<td>13,164</td>
<td>2,168</td>
<td>12,542</td>
<td>936</td>
</tr>
<tr>
<td>1,000 €</td>
<td>1,700</td>
<td>2,975</td>
<td>4,241</td>
<td>200</td>
<td>28,800</td>
<td>100</td>
</tr>
</tbody>
</table>

Año 2004

<table>
<thead>
<tr>
<th>Turismos</th>
<th>Motocicletas</th>
<th>Autobuses</th>
<th>Furgonetas</th>
<th>Camiones</th>
<th>Pasajeros</th>
<th>Mercancías</th>
</tr>
</thead>
<tbody>
<tr>
<td>28,800</td>
<td>4,561</td>
<td>8,600</td>
<td>13,409</td>
<td>2,015</td>
<td>25,400</td>
<td>888</td>
</tr>
<tr>
<td>1,000 €</td>
<td>1,700</td>
<td>2,975</td>
<td>6,975</td>
<td>300</td>
<td>28,599</td>
<td>100</td>
</tr>
</tbody>
</table>

Nota: Los costes se expresan en miles de euros (€) y se obtienen a partir de la evolución de la actividad (Carretera) y la longitud de las infraestructuras (Ferrocarril).
Como se puede observar, se produce un leve incremento de los costes por este concepto de aproximadamente 1,3 millones de €, repartidos aproximadamente a partes iguales entre contaminación de suelos y permeabilización/restauración. Esto supone un aumento del 2% respecto a los costes de 2004.

A continuación mostramos los costes unitarios por modo de transporte.

![Gráfico de costes unitarios](image)

Costes unitarios por afecciones a la naturaleza y el paisaje por unidad transportada. Fuente: elaboración propia.
4.6 COSTES EN ÁREAS URBANAS

Los costes en áreas urbanas están relacionados con la ocupación de las infraestructuras del transporte, tanto viarias como ferroviarias, en dichas áreas urbanas. En el periodo 2004 – 2008 se estima que en las áreas urbanas consolidadas, precisamente por esa componente de consolidadas, no se han producido variaciones de importancia. En todo caso las políticas de tranquilización de tráfico que están actualmente en boga han podido repercutir en la disminución de dichos costes. Sin embargo, ante la dificultad de obtener datos concretos, bajo la apreciación de que los cambios han sido de escasa envergadura, y considerando que sólo representan un 4% de los costes totales -uno de los de menos repercusión- no procederemos a actualizar estos costes.

Año 2004 y 2008

<table>
<thead>
<tr>
<th>Carretera</th>
<th>Turismos</th>
<th>Motocicletas</th>
<th>Autobuses</th>
<th>Furgonetas</th>
<th>Camiones</th>
<th>Pasajeros</th>
<th>Mercancías</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34.800</td>
<td>200</td>
<td>1.200</td>
<td>9.400</td>
<td>19.700</td>
<td>23.800</td>
<td>1.600</td>
</tr>
</tbody>
</table>
Los costes unitarios por modo de transporte empleado son los siguientes.

Costes unitarios en áreas urbanas por unidad transportada. Fuente: elaboración propia.
4.7 COSTES POR EFECTOS INDIRECTOS

Los costes por efectos indirectos están formados por tres conceptos: costes de construcción, mantenimiento y desguace del vehículo; costes de construcción de infraestructuras, y costes de precombustión para la obtención de energía. Todos estos conceptos se generalizan mediante las emisiones de GEI asociadas a los mismos. El primero de ellos es proporcional al tráfico de vehículos ya que se considera que la vida de los mismos está asociada a los recorridos que efectúe. El segundo está asociado a la longitud de infraestructuras y el tercero de nuevo al tráfico y, en caso del ferrocarril, al mix eléctrico de generación de energía visto en el apartado “Producción de energía eléctrica”. A continuación mostramos la evolución entre 2004 y 2008 de esta categoría de coste.

Año 2008

Año 2004
Como se puede observar, la variación ha sido de en torno al millón de euros bajo la consideración de corto plazo, y de más de dos millones para la consideración de largo plazo. En términos porcentuales representa algo más del 3% de variación. Los costes unitarios para 2008 son los siguientes.

Costes unitarios por efectos indirectos por unidad transportada. Fuente: elaboración propia.

Recordamos que para los costes por cambio climático finalmente adoptamos el supuesto denominado de “corto plazo”, acorde al sistema europeo de comercio de emisiones, lo cual supone adoptar el mismo supuesto para los costes por efectos indirectos. Ver explicación en los apartados 2.2.5 y 2.2.8 del Documento I de este estudio, y para más detalle se puede consultar el estudio anterior publicado en 2006 (referencia bibliográfica 1).
4.8 **Costes por congestión**

Los costes por congestión están conformados por tres componentes: urbana, interurbana y de incidencias. La observación de la evolución de estos costes la realizamos en base a los resultados obtenidos en el año 2004, para lo cual se empleó el modelo de transporte de cuatro etapas.

Para el caso de la congestión urbana, dada la dificultad de analizar las modificaciones desde 2004 que haya habido en un viario muy extenso, se entenderá que la evolución de la congestión ha ido en paralelo a la evolución exclusivamente del tráfico urbano.

En el caso del tráfico interurbano, nos centraremos en el análisis de aquellas vías más importantes del entorno metropolitano que registran una congestión recurrente, es decir: habitual, y que se especifican en el apartado de evolución del viario metropolitano. Este análisis se basa por un lado en la evolución de la intensidad de tráfico y por otro en la evolución de la capacidad de las vías. Queremos indicar que en el año 2008 se encontraban en fase de ejecución varias obras destinadas a la mejora de la capacidad del viario de alta velocidad de los entornos metropolitanos de nuestra comunidad; sin embargo aún no habían entrado en servicio muchas de ellas (sólo la Bi-604 por Enekuri se había ejecutado en 2008), por lo que su impacto no se refleja en la evolución de estos costes en el periodo 2004 – 2008. En concreto este análisis se ha centrado en el área del Bilbao metropolitano y en el área de Donostialdea.

Por último, para el caso de la congestión por incidencias se dan dos aspectos divergentes, por una parte la evolución general del tráfico que ha sido ascendente entre los años de comparación, por otra la evolución de la siniestralidad que ha sido descendente en ese mismo periodo. Haremos una conjugación de ambos aspectos, ya que el primero nos servirá para determinar cómo evoluciona el número de vehículos que se ve afectado por una incidencia; el segundo nos servirá para determinar cómo evoluciona el número de incidencias. En la siguiente imagen podemos observar cómo han evolucionado los factores que influyen en la congestión por incidencias.

![Evolución de los factores que afectan a la evolución de la siniestralidad por incidentes. Fuente: elaboración propia.](image)

En la siguiente página mostramos los resultados obtenidos para cada una de las tres componentes de la congestión que hemos mencionado.
Año 2008

<table>
<thead>
<tr>
<th>Año 2008</th>
<th>Coste en Mill €/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urbana</td>
<td>171,5</td>
</tr>
<tr>
<td>Interurbana</td>
<td>92,1</td>
</tr>
<tr>
<td>Recurrente</td>
<td>17,2</td>
</tr>
<tr>
<td>Incidentes</td>
<td>0</td>
</tr>
</tbody>
</table>

El resultado arroja un incremento de costes de 16 millones de €, lo que supone poco más de un 6% con respecto al año 2004. Como se puede observar no todas las componentes de costes evolucionan en la misma medida, mientras que la congestión recurrente, es decir: la que se produce de forma habitual cuando el volumen de tráfico supera la capacidad de la vía, experimenta un aumento, la debida a los incidentes disminuye gracias a la reducción de la siniestralidad, ya que el total de accidentes en el año inicial fue de 14.004, mientras que en el año final fue de 10.557.

Sin embargo, hemos de incidir en lo comentado anteriormente, y es que diversas obras destinadas a rebajar la congestión en las áreas metropolitanas, en la fecha final del periodo analizado aún no habían entrado en servicio, con lo que estos resultados no sirven de referencia para valorar su eficacia.
4.9 SÍNTESIS DE COSTES TOTALES Y ACTUALIZACIÓN A PRECIOS DE 2008

Como consecuencia de los procesos de actualización de resultados de costes externos comentados anteriormente, se ha producido una reducción de los mismos de 251 millones en el período 2004 – 2008. Esta variación ha sido de diferente volumen según los conceptos de que se trate. El mayor protagonismo lo ha tenido el concepto de siniestralidad con una reducción de 245 millones de euros. El resto tienen una importancia mucho menor, repartiéndose entre la reducción de 39 millones de euros por contaminación del aire y el incremento de 17 millones de euros por congestión.

A continuación reproducimos las tablas sintéticas con los resultados obtenidos por cada concepto a precios de 2004.

En estas tablas siguientes sólo reproducimos los valores de costes por cambio climático y por efectos indirectos finalmente adoptados, es decir, los correspondientes al supuesto denominado “corto plazo”. Ver explicación en los apartados 2.2.5 y 2.2.8 del Documento I de este estudio, y para más detalle se puede consultar el estudio anterior publicado en 2006 (referencia bibliográfica 1).

<table>
<thead>
<tr>
<th>Año 2008</th>
<th>Costes por cambio climático</th>
<th>Costes ambientales</th>
<th>Costes por efectos indirectos</th>
<th>TOTAL</th>
<th>Corto plazo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milones de euros de 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carretera</td>
<td>62,1</td>
<td>535,1</td>
<td>154,8</td>
<td>465,9</td>
<td>65,9</td>
</tr>
<tr>
<td>Ferrocarril</td>
<td>0,0</td>
<td>0,1</td>
<td>3,8</td>
<td>12,7</td>
<td>0,3</td>
</tr>
<tr>
<td>Costos totales</td>
<td>62,1</td>
<td>535,2</td>
<td>158,6</td>
<td>478,6</td>
<td>66,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Año 2004</th>
<th>Costes por cambio climático</th>
<th>Costes ambientales</th>
<th>Costes por efectos indirectos</th>
<th>TOTAL</th>
<th>Corto plazo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milones de euros de 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carretera</td>
<td>58,8</td>
<td>779,6</td>
<td>145,2</td>
<td>504,4</td>
<td>64,5</td>
</tr>
<tr>
<td>Ferrocarril</td>
<td>0,1</td>
<td>0,1</td>
<td>3,8</td>
<td>13,1</td>
<td>0,3</td>
</tr>
<tr>
<td>Costos totales</td>
<td>58,9</td>
<td>779,7</td>
<td>149,0</td>
<td>517,5</td>
<td>64,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diferencia 2008-2004</th>
<th>Costes por cambio climático</th>
<th>Costes ambientales</th>
<th>Costes por efectos indirectos</th>
<th>TOTAL</th>
<th>Corto plazo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milones de euros de 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carretera</td>
<td>3,3</td>
<td>-244,5</td>
<td>9,6</td>
<td>-38,5</td>
<td>1,4</td>
</tr>
<tr>
<td>Ferrocarril</td>
<td>-0,1</td>
<td>0,0</td>
<td>0,0</td>
<td>-0,4</td>
<td>0,0</td>
</tr>
<tr>
<td>Costos totales</td>
<td>3,2</td>
<td>-244,5</td>
<td>9,6</td>
<td>-38,9</td>
<td>1,4</td>
</tr>
<tr>
<td>Variación por concepto</td>
<td>5%</td>
<td>-31%</td>
<td>6%</td>
<td>-8%</td>
<td>2%</td>
</tr>
<tr>
<td>Variación sobre el total</td>
<td>0,2%</td>
<td>-12,5%</td>
<td>0,5%</td>
<td>-2,0%</td>
<td>0,1%</td>
</tr>
</tbody>
</table>

Valores de costes a precios de 2004. Fuente: elaboración propia

Como se puede observar, se ha producido una disminución de los costes a precios de 2004 de casi 252 millones de euros. Este volumen supone un 13% de los costes totales de ese año, y un 31% de los propios de siniestralidad. La reducción de la siniestralidad ha sido la...
principal causa de este descenso. La mejora en la red de carreteras, la renovación del parque automovilístico con vehículos más seguros, y la labor institucional, a la que no son ajenas medidas legislativas de carácter sancionador –carné por puntos, código penal- han contribuido de manera decisiva a este descenso.

Por otra parte, la implantación de legislación más estricta sobre las emisiones de los vehículos a motor, junto con la renovación del parque automovilístico, han incidido en la reducción de los efectos derivados de la contaminación del aire, la cual ha supuesto un 2% del total de los costes producidos en el año 2004, y un 8% de los propios de este concepto.

El resto de los conceptos ha experimentado un incremento de los costes, si bien, como se puede observar, con un volumen mucho menor que los dos mencionados anteriormente, tanto en valor absoluto como relativo.

Podríamos mencionar los costes de congestión que, debido al aumento del tráfico en el periodo de análisis, han sufrido un incremento del 6%, lo que supone un 0,8 % del total. Queremos no obstante recalcar que en el año 2008, final del periodo de análisis, aún no habían entrado en servicio varias obras destinadas básicamente a la reducción de la congestión, tal y como se menciona en el apartado correspondiente.

Destacamos también el aumento de los costes por ruido, derivado del aumento del tráfico en zonas urbanas. Asimismo el aumento de los costes por cambio climático es debido al aumento de tráfico que se ha producido en el periodo de análisis.

A continuación mostramos los resultados de los costes del año 2008 referidos a precios de 2008. Lógicamente esto supone un aumento de los valores mostrados anteriormente, referidos a precios de 2004 para poder compararlos con los costes de dicho año.

<table>
<thead>
<tr>
<th>Año 2008</th>
<th>Costes por cambio climático</th>
<th>Costes ambientales</th>
<th>Costes por efectos indirectos</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corto plazo</td>
<td>Ruido</td>
<td>Contam. del aire</td>
<td>Nat. y paisaje</td>
</tr>
<tr>
<td>Carretera</td>
<td>69,9</td>
<td>602,5</td>
<td>174,3</td>
<td>524,6</td>
</tr>
<tr>
<td>Ferrocarril</td>
<td>0,0</td>
<td>0,1</td>
<td>4,3</td>
<td>14,3</td>
</tr>
<tr>
<td>Costes totales</td>
<td>69,9</td>
<td>602,6</td>
<td>178,6</td>
<td>538,9</td>
</tr>
</tbody>
</table>

Valores de costes del año 2008 a precios de 2008. Fuente: elaboración propia
Síntesis del trabajo
SÍNTESIS

El sector del transporte se ha configurado como un elemento básico en la economía a la hora de contribuir al desarrollo y crecimiento de la misma. Sin embargo, a pesar de sus efectos positivos, su actividad presenta algunos aspectos negativos, los cuales implican la generación de unos costes que han de ser considerados. Ejemplo de éstos son la congestión, contaminación del aire, emisión de ruidos, etc. En general, los costes asociados a estos efectos no son imputados a aquéllos que desarrollan la actividad del transporte, y por lo tanto no son tenidos en cuenta por los mismos a la hora de decidir un desplazamiento. Más bien los costes acaban siendo sufridos y sufragados por la sociedad en general. Por este motivo a estos efectos se les denomina como efectos externos, y a los costes asociados a los mismos, costes externos.

El objetivo de este estudio es actualizar el conocimiento sobre los costes externos del transporte en Euskadi. A tal fin se expone en el Documento I, tras una exposición analítica sobre los costes externos del transporte, el marco legislativo que afecta a Euskadi. A continuación, en el citado Documento I, se recogen ejemplos de políticas, instrumentos y medidas aplicadas para reducir e internalizar dichos costes, la mayoría aplicados en el ámbito europeo.

En el Documento II de este trabajo se cuantifican los costes externos en el País Vasco, con datos de la situación el año 2008. Para esta actualización se parte de los valores que con la referencia del año 2004 se publicaron en el estudio “Costes externos del Transporte en el País Vasco” el año 2006 (citado en este trabajo bajo el acrónimo CETPV). Para conseguir una adecuada comparación entre ambos escenarios temporales, se ha mantenido el año 2004 como referencia de los precios de coste de los diversos conceptos de externalidades.

COSTES EXTERNOS VALORADOS

Para mostrar la situación en que se encuentran en la actualidad las políticas destinadas a la estimación de los costes externos, nos hemos apoyado básicamente en las llevadas a cabo en el ámbito de la Unión Europea (UE), en el que geográficamente nos movemos y que se encuentra a la vanguardia en las mencionadas políticas.

Los conceptos que se llegan a valorar y los aspectos que son considerados para su estimación los mostramos a continuación.

- **Costes por congestión** que comprenden pérdidas de tiempo, falta de fiabilidad horaria y pérdida de actividad económica.
- **Costes de siniestralidad** que se refieren a los costes materiales, médicos, de productividad, por sufrimiento del accidentado y sentimentales por los fallecimientos que causan los accidentes.
- **Costes ambientales**, los cuales engloban a su vez diversos aspectos:
 - **Costes por contaminación del aire** que se refieren al impacto que las emisiones de partículas PM10, NOX, SOx e hidrocarburos tienen en la salud de las personas, ya sea materializada en costes del sistema sanitario o en pérdida de años de vida.
Costes externos del transporte en la CAPV: actualización e internalización

- **Costes por ruido** que se materializan en la pérdida de valor de los inmuebles ubicados en las proximidades de las infraestructuras, malestar para la población y los costes de los tratamientos sanitarios asociados.

- **Costes por cambio climático** referidos a los costes de prevención para reducir el cambio climático y a los daños ocasionados por el incremento de la temperatura.

- **Otros costes externos** donde se incluyen otros conceptos diferentes a los mencionados anteriormente y que enumeramos a continuación.
 - **Costes para la naturaleza y el paisaje** referidos al gasto necesario para reducir el efecto barrera de las infraestructuras y a los costes de compensación destinados al mantenimiento de la biodiversidad en el entorno.
 - **Costes por contaminación de suelo y agua** asociados al aseguramiento de la calidad del suelo y de las aguas.
 - **Otros costes en áreas urbanas** por un lado referidos al efecto barrera que las infraestructuras del transporte tienen en la movilidad no motorizada de las áreas urbanas, y por otro a la ocupación de espacio de esas mismas infraestructuras.
 - **Efectos indirectos** que hacen referencia a los procesos anteriores y posteriores a la realización de la actividad del transporte pero que son necesarios para su consecución; se centran en el consumo energético asociado. Engloban los procesos de construcción de infraestructuras, producción y desguace de vehículos y producción energética.
 - **Costes por dependencia energética**, este concepto es el único que no se consideraba durante la elaboración del estudio de referencia CETPV, ya que ha surgido recientemente. Ha sido desarrollado sobre todo en los Estados Unidos y en la actualidad sólo existen resultados de su estimación en ese ámbito geográfico.

Marco legislativo

A fin de reducir e internalizar los costes externos generados por la actividad del transporte, se han desarrollado medidas legislativas y de otra índole que se han analizado en este estudio. Entre las medidas legislativas destacan las establecidas por la propia Unión Europea, las cuales hacen hincapié en la tarificación del coste social marginal de las externalidades asociadas al transporte.

Mediante el desarrollo de diversos estudios llevados a cabo en este aspecto, se ha concluido que la internalización de los costes externos a través de los instrumentos del mercado (sistemas de pago) puede ser un método eficaz en la reducción de los impactos negativos que están asociados a esta actividad. Esta tarificación conllevaría un mayor rendimiento del sistema de transporte, por ejemplo mediante un uso más eficaz de las infraestructuras y la energía; asimismo garantizaría un mejor equilibrio entre modos de transporte mediante la correcta imputación de los costes asociados a los mismos, además de reducir la siniestralidad -como coste externo- y el impacto ambiental que provoca el sector del transporte.
Al amparo de estas conclusiones se han desarrollado algunas directivas consistentes básicamente en la aplicación de tarifas por la utilización de infraestructuras tanto viarias como ferroviarias.

Entre ellas destacamos la conocida como Euroviñeta que fue adoptada en 2006. Esta directiva permite a los estados miembros el cobro de tasas y peajes a los vehículos pesados por el uso de las infraestructuras viarias. Esta directiva sirve de base para la consecución de una política tarifaria europea, al tiempo que pretende la internalización de los costes externos, si bien establece ciertos límites de recaudación determinados por el propio coste de la infraestructura con algunas excepciones motivadas por la ubicación de la infraestructura, en concreto en zonas montañosas.

Como aspecto más llamativo, esta directiva incluye la posibilidad de tarificación de la infraestructura en función de los factores de emisión de los vehículos, lo que supone un incentivo para la renovación del parque de vehículos pesados, con los beneficios que esto conlleva. Asimismo propugna la modulación de los impuestos a los vehículos de forma que se favorezca la adquisición de aquellos menos contaminantes.

La directiva 2001/14/CE de infraestructura ferroviaria se refiere a la aplicación de cánones por la utilización de líneas de ferrocarril. Estos cánones tienen como función la financiación de la actividad del administrador de infraestructuras.

Por otra parte, esta directiva también recoge la posibilidad de que el canon refleje la escasez de capacidad de un determinado segmento identificable de la infraestructura durante períodos de congestión.

Asimismo se hace mención de que el canon por utilización de infraestructuras podrá ser modificado para tener en cuenta el coste de los efectos ambientales causados por la explotación del servicio ferroviario. Sin embargo, una tarificación de los costes ambientales que dé lugar al aumento de la cifra global de ingresos del administrador de infraestructuras sólo estará autorizada si existe una tarificación comparable también para otros modos de transporte que compitan con el ferrocarril.

Un aspecto interesante que incluye esta Directiva es que otorga la posibilidad de implantar por un período limitado un sistema que compense por el uso de la infraestructura ferroviaria los costes medioambientales, de accidentes y de infraestructura que no paguen los modos de transporte competidores.

Existe una propuesta de Directiva sobre impuestos aplicables a los automóviles de turismo que, entre otros objetivos, pretende la reestructuración de la base imponible de los impuestos aplicables a estos vehículos para favorecer un medio ambiente sostenible, reduciendo las emisiones de dióxido de carbono. La introducción de un vínculo entre las emisiones de CO₂ y los impuestos de matriculación y el anual de circulación se basará en el número de gramos de CO₂ emitidos por kilómetro por cada automóvil. De esta manera se internalizan en cierta medida los costes externos por cambio climático y se incentiva, en consecuencia, la reducción de dichos costes.

En lo que se refiere a las medidas aplicadas en nuestro entorno más inmediato, en España se ha reformado el impuesto de matriculación para modularlo en función de las emisiones de CO₂ asociadas a los vehículos. Asimismo se han puesto en marcha ayudas económicas – Plan VIVE y Plan 2000E- destinadas a la sustitución de vehículos antiguos por otros con menores niveles de emisiones de CO₂.
MEDIDAS DE INTERNALIZACIÓN Y/O REDUCCIÓN DE COSTES

Se han analizado algunas de las medidas implantadas en diversos entornos de la geografía mundial destinadas, sobre todo, a reducir los costes externos ocasionados por la circulación de automóviles. Muchas de ellas están orientadas a la reducción de la congestión o a la reducción de emisiones.

Entre ellas se encuentran diversas tipologías de peaje urbano. En el caso de Londres, este peaje se cobra a cada vehículo que se encuentra en un área ubicada en la zona centro de la ciudad, sin considerar cuántos pasos se han realizado por los accesos a dicha zona. Tiene como finalidad reducir los problemas de congestión ocasionados por los vehículos. El pago de la tarifa da derecho a circular un día completo por la zona restringida. Gracias a su aplicación, se produjo una reducción de la entrada de vehículos a la zona centro de un 30% con respecto a la situación existente previamente. Para seguir permitiendo el acceso de personas a la zona centro se reforzó el sistema de transporte público de la ciudad con una fuerte inversión. El control de vehículos se realiza mediante cámaras de circuito cerrado de televisión, imponiendo fuertes multas a los infractores por las cuales se obtiene un 36% de la recaudación total del sistema.

En el caso de Estocolmo, donde también existe un sistema de peaje urbano, los objetivos que se persiguen son similares; sin embargo el sistema de funcionamiento es diferente. El cobro se efectúa por el paso del vehículo por los accesos a la zona que se pretende “proteger” mediante un sistema similar al “telepeaje” de las autopistas. Esto redundaría en unos menores costes administrativos. Los beneficios obtenidos se reinvierten en la mejora de la red viaria a fin de reducir los problemas de congestión, si bien es posible que esto conlleve la generación de una demanda inducida no contemplada en un principio.

La ciudad de Singapur fue la primera en implantar un sistema de peaje urbano, en 1975, con un sistema de cobro similar al del caso de Estocolmo, destinado básicamente a reducir la congestión. Esta medida ha estado acompañada de otras destinadas a limitar la adquisición de vehículos, ya sea a través de la imposición de altos costes a la propiedad de los mismos, o mediante restricciones en el crecimiento de la flota de vehículos privados.

En paralelo a estas medidas se han realizado fuertes inversiones en el transporte público y en esquemas de "Park and Ride" o aparcamientos de conexión, con el propósito de proporcionar a los usuarios de automóvil alternativas reales para cambiar a sistemas de transporte más eficientes desde el punto de vista social, ambiental y económico. Como resultado, a pesar de contar con uno de los ingresos per cápita más altos de Asia, menos del 30% de sus hogares disponen de automóvil. Los resultados obtenidos arrojan que entre 1975 y 1983 la entrada de personas a la zona restringida en transporte público por motivo laboral pasó de representar el 33% del total, a cerca del 70%.

El programa Ecopass de Milán consiste en el pago de un cargo por contaminación implantado en esta ciudad, cobrado como un peaje urbano para algunos usuarios de los vehículos que viajan dentro de las zonas de la ciudad designadas como de tráfico limitado. El objetivo principal del programa es reducir la contaminación del aire originada por las emisiones de los automóviles, al tiempo que utiliza los fondos recaudados para financiar proyectos de mejora del transporte colectivo. Este esquema es similar a los programas de peajes de congestión implantados en Londres y Estocolmo, pero en realidad corresponde a una evolución de esos programas. A diferencia de las anteriores, en el Ecopass sólo pagan los vehículos que emiten más contaminación en función del estándar de emisiones del motor del vehículo.
Entre otras medidas destinadas a reducir el uso del automóvil se encuentra la restricción de tráfico (o racionamiento del espacio viario). Esta medida de gestión es empleada para establecer prohibiciones a la circulación de diversas clases de vehículos, en cierto tiempo o en cierto lugar, y es utilizada principalmente dentro de las zonas urbanas o en situaciones de emergencia. Estas restricciones son usualmente creadas con el fin de regular el uso de la red viaria, principalmente durante las horas punta en áreas urbanas, para reducir la congestión o disminuir los niveles de contaminación atmosférica producidos por los automóviles. Esta medida forma parte de las estrategias empleadas para lograr un uso más eficiente y equitativo del sistema de transporte urbano, evitando así grandes inversiones en infraestructura. La experiencia de la ciudad de São Paulo es una de las pioneras y se basa en la restricción por número de matrícula. Su eficacia es discutida y no implica la internalización de las externalidades -ya que el usuario no paga- sino la reducción directa de las mismas.

Otra tipo de medidas que podemos encontrar para reducir los costes externos son los aparcamientos disuasorios de conexión con el transporte público. Estas infraestructuras tienen como finalidad la de permitir acceder al transporte colectivo de alta capacidad a aquellos usuarios que viven en áreas donde, por la baja densidad de población, no es factible la prestación de servicios de transporte público. Es aquí donde se logra desarrollar todo su potencial. Complementariamente permite el acceso a los centros urbanos de las ciudades de los usuarios del automóvil sin que éstos tengan que hacer uso del vehículo hasta el punto de destino, lo que reduce los problemas de congestión propios de los accesos a las grandes ciudades.

Esta medida resulta más eficaz en entornos en los que se desarrolla un urbanismo disperso frente a aquellos con urbanismo más compacto.

Entre las medidas específicas referidas al transporte de mercancías, tenemos el denominado gravamen sobre transporte pesado sujeto a las prestaciones, de Suiza. Esta normativa es de aplicación a los camiones de más de 3,5 Tm que circulen por el territorio suizo. Consiste en la aplicación de una tasa por Tm transportada y km recorrido para aquellos vehículos que circulen por las vías de alta capacidad y carreteras del país alpino de forma proporcional al nivel de contaminación de los motores del camión. Sus objetivos son: la aplicación del principio “quien contamina, paga”, lograr un trasvase de mercancías al ferrocarril y proteger el medio ambiente.

Como consecuencia de este gravamen la carga media de los camiones ha aumentado, produciéndose una reducción en el número de los mismos a pesar del incremento total de mercancía. Asimismo se ha logrado una renovación de los vehículos, con motores más limpios. Sin embargo no se ha logrado un apreciable trasvase de mercancías hacia el ferrocarril, en parte debido a que las distancias para las que este modo es competitivo superan las propias dimensiones del país alpino.
Reestructuración y actualización de los costes externos

A fin de obtener una secuencia de la evolución de los costes externos en el País Vasco partiendo del estudio original, se ha procedido a incluir los mismos conceptos que ya se incluyeron en el estudio de referencia. Sobre las otras dos categorías de costes que se han mencionado en el diagnóstico del estudio –costes por contaminación de suelo y agua y costes por dependencia energética-, dada la complejidad de su estimación y la falta de referencias adecuadas, no se han empleado en este estudio.

En el caso del año 2008 no se ha incluido la valoración de los costes por cambio climático a corto plazo sin mecanismos flexibles, ya que este aspecto ya no se considera en la valoración de los costes externos.

Para realizar una comparación entre los costes externos de 2008 y los estimados anteriormente para el año 2004, se han mantenido los precios de este año 2004 como referencia. La actualización de los costes se ha llevado a cabo en base a la evolución de los parámetros que condicionan cada uno de los conceptos de coste, si bien en algunos casos la actualización se ha realizado aplicando directamente el mismo procedimiento de cálculo que para los costes de 2004.

Así se ha observado la evolución, entre otros, de los registros de siniestralidad, de intensidad de tráfico, de estadísticas de transporte público, de desarrollo de infraestructuras, de parque de vehículos, de factores de emisión, del mix energético, etc.

Centrándonos en los resultados, las ideas principales que extraemos de los mismos son:

1. La fuerte reducción de los costes por siniestralidad, en paralelo a la mejora de la seguridad vial que se ha producido en los últimos años. Según el propio Departamento de Interior del Gobierno Vasco esto ha sido posible gracias a varios factores, entre los que se encuentran: una buena red de carreteras en mejora constante y un parque móvil más seguro y con un nivel de servicio garantizado por las inspecciones técnicas obligatorias.

2. Destaca también la reducción de los costes de contaminación del aire pese al aumento del tráfico urbano. Esto se debe a la renovación del parque de vehículos y a las mayores exigencias ambientales que se han venido implantando en los vehículos de nueva matriculación desde la década de los noventa.

3. Sobre el resto de indicadores, mencionamos el incremento en los costes de congestión. Este aumento se ha debido al incremento de tráfico que se produjo en el periodo 2004-2008 sin que aún hubieran entrado en servicio varias obras de infraestructura ya previstas destinadas a reducir dicha congestión. Podemos adelantar de todas maneras que en aquellos casos en que sí había entrado en servicio la mejora de capacidad de la red viaria, sí se ha producido un descenso de los factores que afectan a la congestión, como en el caso de la BI-604 (carretera de Enekuri).

Recordamos que para los costes por cambio climático finalmente adoptamos el supuesto denominado de “corto plazo”, acorde al sistema europeo de comercio de emisiones, lo cual supone adoptar el mismo supuesto para los costes por efectos indirectos. Y que los costes por cambio climático denominados “corto plazo sin mecanismos” ya no se consideran. Ver explicación en los apartados 2.2.5 y 2.2.8 del Documento I de este estudio.
Gráficamente los resultados se muestran a continuación a precios de 2004.
Los resultados arrojan unos costes totales para el año 2008 a precios de 2004 de 1.700 millones de euros. En el año 2004 éstos eran de 1.952 millones de euros, con lo que se ha producido un descenso de los costes externos en estos cuatro años de 252 millones de euros a precios de 2004. El equivalente a precios de 2008 arrojaría para ese año unos costes de 1.914 millones de euros, con una reducción equivalente en euros de 2008 de 284 millones de euros con respecto a 2004.

La variación de costes experimentada ha sido diferente según los conceptos de que se trate. El mayor protagonismo lo ha tenido el concepto de siniestralidad con una reducción de 245 millones de euros. El resto tienen una importancia mucho menor, repartiéndose entre la reducción de 39 millones de euros por contaminación del aire y el incremento de 17 millones de euros por congestión.

Analizando más en detalle la evolución de estos costes constatamos lo siguiente:

Los costes asociados a las emisiones de gases de efecto invernadero del transporte han experimentado un incremento leve de entre 3 millones de € y 7 millones de € anuales según se consideren los costes a corto o a largo plazo. Esto supone un incremento proporcional del 5%. La causa ha sido la sensible estabilización de los flujos de tráfico en 2008 con respecto a 2004, debido en gran medida a la finalización de la tendencia creciente de estos flujos que se produjo en 2008.

Se observa un descenso muy importante de los costes por siniestralidad, ya que pasan de los 780 a los 535 millones de euros (245 millones de € menos), lo que equivale a una bajada del 31% debido a las razonas apuntadas anteriormente.

Los costes totales por ruido experimentan un aumento de 10 millones de €, pasando de los 149 millones a los 159 millones. Esto supone un aumento inferior al 7%. Esta situación se debe al incremento de tráfico urbano que se ha experimentado en el conjunto del País Vasco, si bien pueden existir importantes diferencias entre los diversos núcleos.

Los costes por contaminación del aire experimentan un descenso de 38 millones de €, pasando de 517 millones en 2004 a 479 millones en 2008, lo que supone una reducción de más del 7%. Esto se ha logrado esencialmente gracias a los requerimientos más estrictos en cuanto a emisiones de los vehículos matriculados en la UE, lo que demuestra que estas medidas están cumpliendo sus expectativas de disminución de la contaminación del aire.

Se produce un leve incremento de los costes de naturaleza y paisaje de aproximadamente 1,3 millones de € repartidos aproximadamente a partes iguales entre contaminación de suelos y permeabilización/restauración. Esto supone un aumento del 2% respecto a los costes de 2004 debido al aumento de infraestructuras y de vehículos en circulación.

Los costes en áreas urbanas se han considerado estables ya que se entiende que las zonas urbanas consolidadas no han experimentado variaciones de importancia. En todo caso puede haberse producido alguna mejora gracias a las políticas de tranquilización de tráfico, lo que, de todas formas, resulta difícil de cuantificar.

Los costes por efectos indirectos han experimentado un leve incremento de en torno al millón de euros bajo la consideración de corto plazo, y de algo más de dos millones para la consideración de largo plazo. En términos porcentuales representa algo más del 3% de variación. En esto ha influido en forma de aumento de costes el incremento del tráfico y de infraestructuras, y en forma de disminución, la evolución del mix eléctrico nacional donde han tomado un mayor peso las fuentes de energía renovable.
Los costes de **congestión** arrojan un incremento de 16 millones de €, lo que supone poco más de un 6% con respecto al año 2004. Sin embargo no todas las componentes de estos costes evolucionan en la misma medida. Mientras que la congestión recurrente, es decir: la que se produce de forma habitual cuando el volumen de tráfico supera la capacidad de la vía, experimenta un aumento, la debida a los incidentes disminuye gracias a la reducción de la siniestralidad.

A continuación mostramos de forma tabular los resultados obtenidos para el año 2008 y los referidos al año 2004, así como las diferencias entre ambos a precios constantes de 2004.

En estas tablas siguientes sólo reproducimos los valores de costes por cambio climático y por efectos indirectos finalmente adoptados, es decir, los correspondientes al supuesto denominado “corto plazo”. Ver explicación en los apartados 2.2.5 y 2.2.8 del Documento I de este estudio, y para más detalle se puede consultar el estudio anterior publicado en 2006 (referencia bibliográfica 1).

<table>
<thead>
<tr>
<th>Año 2008</th>
<th>Costes por cambio climático</th>
<th>Costes ambientales</th>
<th>Costes por efectos indirectos</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corto plazo</td>
<td>Ruido</td>
<td>Contam.</td>
<td>Corto plazo</td>
</tr>
<tr>
<td></td>
<td>Costes por accidentes</td>
<td>del aire</td>
<td>del aire</td>
<td>Costo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nat. y paisaje</td>
<td>Áreas urbanas</td>
<td>plazo</td>
</tr>
<tr>
<td>Carretera</td>
<td>62,1</td>
<td>535,1</td>
<td>154,8</td>
<td>465,9</td>
</tr>
<tr>
<td>Ferrocarril</td>
<td>0,0</td>
<td>0,1</td>
<td>3,8</td>
<td>12,7</td>
</tr>
<tr>
<td>Costes totales</td>
<td>62,1</td>
<td>535,2</td>
<td>158,6</td>
<td>478,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Año 2004</th>
<th>Costes por cambio climático</th>
<th>Costes ambientales</th>
<th>Costes por efectos indirectos</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corto plazo</td>
<td>Ruido</td>
<td>Contam.</td>
<td>Corto plazo</td>
</tr>
<tr>
<td></td>
<td>Costes por accidentes</td>
<td>del aire</td>
<td>del aire</td>
<td>Costo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nat. y paisaje</td>
<td>Áreas urbanas</td>
<td>plazo</td>
</tr>
<tr>
<td>Carretera</td>
<td>58,8</td>
<td>779,6</td>
<td>145,2</td>
<td>504,4</td>
</tr>
<tr>
<td>Ferrocarril</td>
<td>0,1</td>
<td>0,1</td>
<td>3,8</td>
<td>13,1</td>
</tr>
<tr>
<td>Costes totales</td>
<td>58,9</td>
<td>779,7</td>
<td>149,0</td>
<td>517,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diferencia 2008-2004</th>
<th>Costes por cambio climático</th>
<th>Costes ambientales</th>
<th>Costes por efectos indirectos</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corto plazo</td>
<td>Ruido</td>
<td>Contam.</td>
<td>Corto plazo</td>
</tr>
<tr>
<td></td>
<td>Costes por accidentes</td>
<td>del aire</td>
<td>del aire</td>
<td>Costo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nat. y paisaje</td>
<td>Áreas urbanas</td>
<td>plazo</td>
</tr>
<tr>
<td>Carretera</td>
<td>3,3</td>
<td>-244,5</td>
<td>9,6</td>
<td>-38,5</td>
</tr>
<tr>
<td>Ferrocarril</td>
<td>-0,1</td>
<td>0,0</td>
<td>0,0</td>
<td>-0,4</td>
</tr>
<tr>
<td>Costes totales</td>
<td>3,2</td>
<td>-244,5</td>
<td>9,6</td>
<td>-38,9</td>
</tr>
<tr>
<td>Variación por concepto</td>
<td>5%</td>
<td>-31%</td>
<td>6%</td>
<td>-8%</td>
</tr>
<tr>
<td>Variación sobre el total</td>
<td>0,2%</td>
<td>-12,5%</td>
<td>0,5%</td>
<td>-2,0%</td>
</tr>
</tbody>
</table>
La cuantificación de los costes del año 2008 referidos a precios de 2008 es la siguiente:

<table>
<thead>
<tr>
<th>Año 2008</th>
<th>Costes por cambio climático (Millones de euros de 2008)</th>
<th>Costes por accidentes</th>
<th>Costes ambientales</th>
<th>Costes por efectos indirectos</th>
<th>TOTAL (Millones de euros de 2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corto plazo</td>
<td></td>
<td>Corto plazo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carretera</td>
<td>69,9</td>
<td>602,5</td>
<td>174,3</td>
<td>524,6</td>
<td>74,2 73,5 27,8 316,2 1.863,1</td>
</tr>
<tr>
<td>Ferrocarril</td>
<td>0,0</td>
<td>0,1</td>
<td>4,3</td>
<td>14,3</td>
<td>0,3 28,6 3,8 0,0 51,5</td>
</tr>
<tr>
<td>Costes totales</td>
<td>69,9</td>
<td>602,6</td>
<td>178,6</td>
<td>538,9</td>
<td>74,5 102,1 31,6 316,2 1.914,4</td>
</tr>
</tbody>
</table>

Podemos concluir por tanto que se ha producido una reducción de los costes externos en el período 2004 - 2008. A esta evolución ha contribuido de forma indudable la disminución de la siniestralidad y también, aunque en menor medida la renovación del parque de vehículos. Las externalidades provocadas en el País Vasco en 2008 suponen una media de más de 900 euros por habitante y año.
Bibliografía y referencias

 http://es.wikipedia.org/wiki/Peaje_urbano_de_Londres

 http://www.transportstyrelsen.se/trangselskatt

23. Página web del peaje de Singapur.

 http://es.wikipedia.org/wiki/Tarifas_de_congesti%C3%B3n_de_Singapur

25. Página web del Ecopass de Milán.
 http://www.comune.milano.it/dseserver/ecopass/abbonam_residenti.html

 http://pt.wikipedia.org/wiki/Rod%C3%ADzio_de_ve%C3%ADculos_de_S%C3%A3o_Paulo

29. Página web de la Fundación Movilidad.

33. Página web del mapa de aforos de las carreteras de Álava 2008.

http://www.garraioak.ejgv.euskadi.net/r41-429/es/

http://www.dgt.es/portal/es/seguridad_vial/estadistica/

39. Página web de la DGT, sección de estadísticas.
http://www.dgt.es/portal/es/seguridad_vial/estadistica/

40. Página web del portal de la Unión Europea sobre normativa de emisiones.
http://europa.eu/legislation_summaries/environment/air_pollution/index_es.htm

41. Página web de wikipedia sobre normativas de emisiones de la UE.
http://es.wikipedia.org/wiki/Normativa_europea_sobre_emisiones

46. Página web de Red Eléctrica de España.
http://www.ree.es/sistema_electrico/informeSEE.asp